UNITED STATES SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

FORM 8-K

CURRENT REPORT
Pursuant to Section 13 or 15(d)
of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): February 7, 2019

RESTORBIO, INC.

(Exact name of registrant as specified in its charter)

Delaware (State or other jurisdiction of incorporation) 001-38359 (Commission 81-3305277 (I.R.S. Employer

500 Boylston Street, 12th Floor Boston, MA 02116 (Address of principal executive offices, including zip code)

(857) 315-5521 (Registrant's telephone number, including area code)

Not Applicable (Former Name or Former Address, if Changed Since Last Report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425)

 $\label{eq:pre-communications} \square \quad \text{Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))}$

□ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))

Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§ 230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§ 240.12b-2 of this chapter).

Emerging growth company $\ oxtimes$

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act. \Box

Item 7.01. Regulation FD Disclosure.

resTORbio, Inc. (the "Company") from time to time presents and/or distributes to the investment community at various industry and other conferences slide presentations to provide updates and summaries of its business. A copy of its current corporate slide presentations (the "Presentations") are attached to this Current Report on Form 8-K as Exhibits 99.1 and 99.2. The Company undertakes no obligation to update, supplement or amend the materials attached hereto as Exhibit 99.1 and 99.2.

Exhibit 99.2 to this Current Report Form 8-K shall not be deemed "filed" for purposes of Section 18 of the Securities Exchange Act of 1934, as amended (the "Exchange Act") or otherwise subject to the liabilities of that section, nor shall it be deemed incorporated by reference in any filing under the Securities Act of 1933, as amended, or the Exchange Act, except as expressly set forth by specific reference in such a filing.

Item 9.01. Financial Statements and Exhibits.

(d) Exhibits

Exhibit No. Description

99.1 Corporate slide presentation of resTORbio, Inc., dated February 7, 2019.
 99.2 Corporate slide presentation of resTORbio, Inc., dated February 7, 2019.

. . .

SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

resTORbio, Inc.

Date: February 7, 2019

By: /s/ Chen Schor Chen Schor President and Chief Executive Officer

Forward-looking statements

This presentation may contain "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, statements regarding the safety, efficacy and regulatory and clinical progress of our product candidates, including RTB101 alone and in combination with everolimus or sirolimus. All such forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," or "continue," and other similar expressions are intended to identify forward-looking statements. Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, our clinical results and other future conditions. All statements other than statements of historical facts contained in this presentation, including statements regarding future results of operations and financial position, business strategy, current and prospective product candidates, planned clinical trials and preclinical activities, including the initiation, timing, progress and results of our preclinical and clinical studies and our research and development programs, product approvals, research and development costs, current and prospective collaborations, timing and likelihood of success, including our ability to advance RTB101 alone and in combination with everolimus or sirolimus into, and successfully complete, clinical studies, timing of the end-of-Phase 2 meeting with the U.S. Food and Drug Administration, and the timing or likelihood of regulatory fillings and approvals, expectations regardin

These statements are also subject to a number of material risks and uncertainties that are discussed in the section entitled "Risk Factors" in resTORbio's annual report on Form 10-K for the fiscal year ended December 31, 2017, as well as discussions of potential risks, uncertainties, and other important factors in resTORbio's subsequent filings with the Securities and Exchange Commission. Any forward-looking statement speaks only as of the date on which it was made. Neither we, nor our affiliates, advisors, or representatives, undertake any obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While we believe these third-party sources to be reliable as of the date of this presentation, we have not independently verified, and we make no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while we believe our own internal research is reliable, such research has not been verified by any independent source.

resTORbio highlights

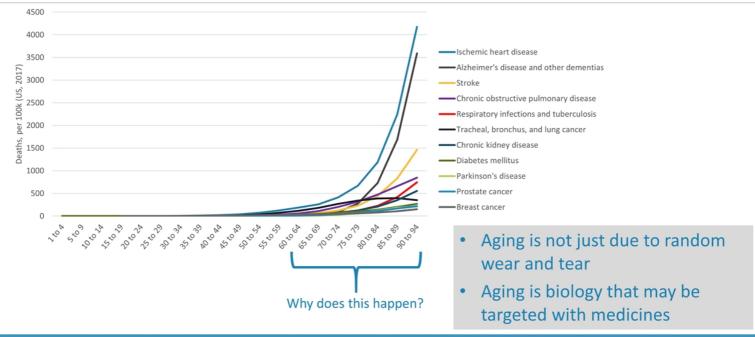
Targeting the biology of aging

- Lead clinical candidate, RTB101, is the most advanced selective TORC1 inhibitor
- TORC1 inhibition improves the function of aging organ systems including the immune, neurologic, and cardiovascular systems

Positive results in Phase 2b to improve immune function and reduce the incidence of RTIs

- 30.6% reduction in the percentage of patients with laboratory-confirmed RTIs (p=0.025)
- 52.1% reduction in percentage of patients with severe laboratory-confirmed RTI symptoms (p=0.034)
- Successfully defined dose and patient population for Phase 3 program
- End-of-Phase 2 meeting with the FDA expected in 1Q19; Plan to initiate Phase 3 program in 1H19
- RTIs are the 4th most common cause of hospitalization in people 65+; 2nd in 85+ (US)

Data-driven approach to expand into additional aging-related indications

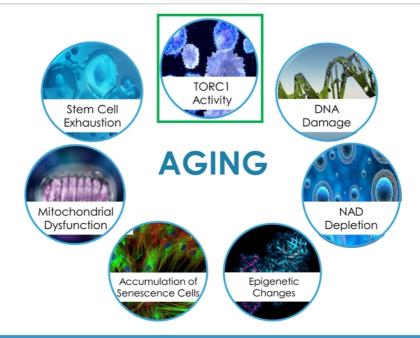

- Improving neurologic function: Plan to initiate Phase 1b/2a study in Parkinson's disease in 1Q19
- · Building a pipeline targeting multiple mechanisms underlying aging

RTI = respiratory tract infection

res**TOR**bio

વ

Aging is the biggest risk factor for most chronic diseases



Global Burden of Disease Collaborative Network, Global Burden of Disease Study 2017 (GBD 2017) Results

res**TOR**bio

4

Targeting the biology of aging

The TORC1 pathway

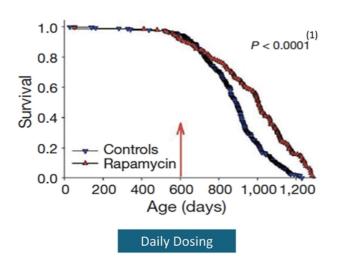
TORC1 is an evolutionarily conserved pathway that regulates aging

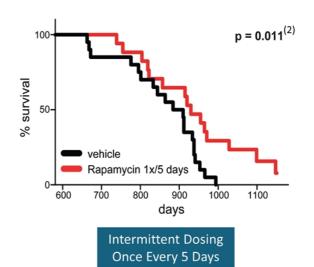
TORC1 inhibition extended lifespan and healthspan in multiple species

ource: Lamming, Dudley W., et al. (2013) Journal of Clinical Investigation 123 (3): 980–989.

Extensive genetic validation that TORC1 inhibition extends lifespan across species

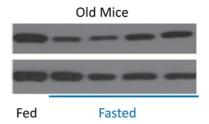
Species	Genetic Manipulation to Inhibit mTOR
Yeast	SCH9 (Akt/S6K homolog) insertional mutant 1
	SCH9 (Akt/S6K homolog) deletion ¹
	SCH9 (Akt/S6K homolog) insertional mutant 2
	SCH9 (Akt/S6K homolog) deletion ²
	TOR1 deletion ³
	TOR1 deletion 4
C. elegans	TOR (let-363) RNAi ⁵
	Raptor (daf-15) heterozygous 6
	S6K (rsks-1) RNAi 7
	S6K (rsks-1) deletion mutant ⁷
	TOR (let-363) RNAi 7
	S6K (rsks-1) RNAi ⁸
	S6K (rsks-1) deletion mutant 8
	TOR (let-363) RNAi 8
	Raptor (daf-15) RNAi 9
	RagGTPase (raga-1) RNAi 9
	RagGTPase (raga-1) RNAi 9
	Rheb (rheb-1) RNAi 9
D. melanogaster	dTSC1 overexpression 10
	dTSC2 overexpression 10
	dTOR FRB domain (dominant negative) 10
	dS6K dominant negative 10
	DTOR mutant (hypomorph) 11
	d4E-BP overexpression 12
	d4E-BP weak activated 12
	d4E-BP strong activated 12
M. musculus	Loss of S6K1 13
	Mtor*/-Mlst8*/- genotype 14





Corresponding citations can be found on slide 39

TORC1 inhibitors extend lifespan in mice even when started late in life and given intermittently


Harrison et al. (2009) Nature, 460:392-396

Arriola Apelo et al. (2016) Gerontol A Biol Sci Med Sci, 71: 876-88

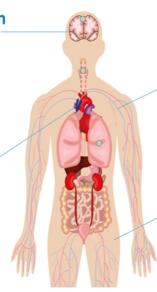
TORC1 may become dysregulated and overactive in some aging organ systems

- Feeding activates TORC1 leading to increased protein and lipid synthesis
- Fasting inhibits TORC1 leading to upregulation of protective pathways

 TORC1 activity remains aberrantly elevated during fasting, preventing upregulation of protective pathways

Sengupta et al., Nature 2010

Decreasing TORC1 activity may upregulate protective pathways and may have benefits in aging-related diseases

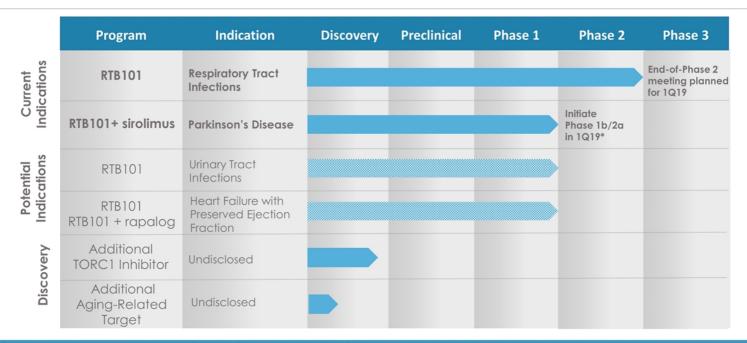

TORC1 inhibition may improve the function of multiple aging organ systems

Improved Neurologic Function

Tain et al., *Nature Neuroscience*, 2009 Malagelada et al., *J Neurosci*, 2010 Spilman et al., *PLoS ONE*, 2010 Halloran et al., *Neuroscience*, 2012 Majumder et al., *Aging Cell*, 2012 Neff et al., *JCI*, 2013

Reversal of aging-related cardiac dysfunction

Flynn et al., *Aging Cell*, 2013 Dai et al., *Aging Cell*, 2014 Chiao et al., *Aging*, 2016

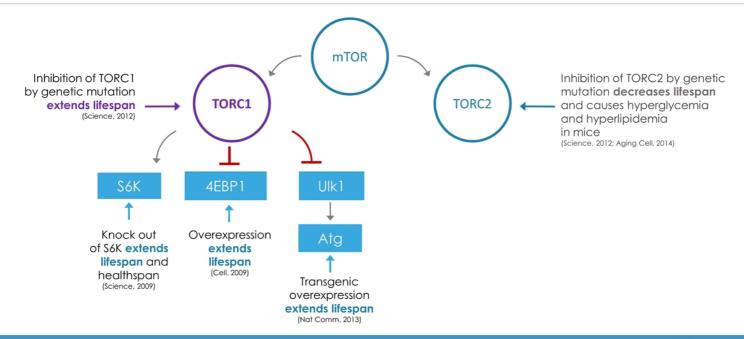

Reversal of aging-related immune dysregulation

Chen et al., Science Sig, 2009 Selman et al., Science, 2011 Neff et al., JCI, 2013 Hurez et al., Aging Cell, 2015

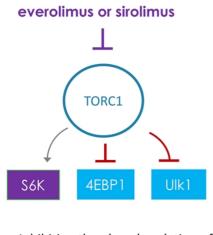
Improvement in physical activity

Selman et al., *Science*, 2011 Harrison et al., *Nature*, 2009 Wilkinson et al., *Aging Cell*, 2014 Flynn et al., *Aging Cell*, 2013

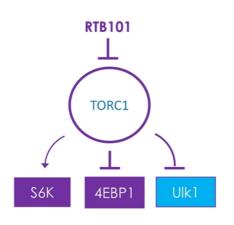
Most advanced pipeline targeting aging-related diseases



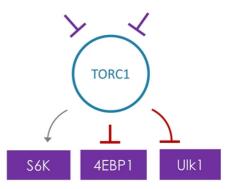
For heart failure with preserved ejection fraction, Parkinson's Disease and certain other infections, we may be required to file an investigational new drug applicatio or IND, prior to initiating Phase 2 clinical trials. We expect to have the ability to initiate these Phase 2 clinical trials without the need to conduct prior Phase 1 trials.


TORC1 Pathway

Selective inhibition of TORC1 may have therapeutic benefit for the treatment of aging-related diseases



Spectrum of TORC1 inhibition with RTB101 and rapalog


Inhibiting the phosphorylation of 1 target of TORC1

= indicates phosphorylation is inhibited

Inhibiting the phosphorylation of 2 targets of TORC1

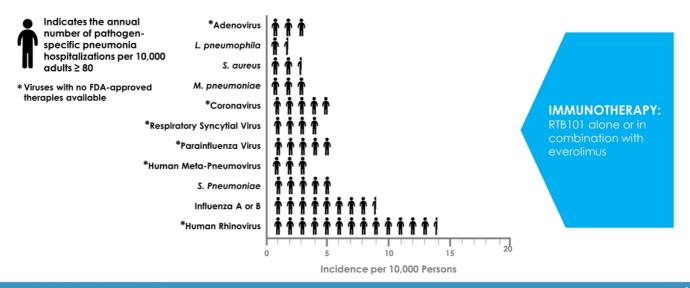
RTB101 + everolimus or sirolimus

Inhibiting the phosphorylation of 3 targets of TORC1

Improving Immune Function Respiratory Tract Infections (RTIs)

Results of Phase 2a trial

 264 mostly healthy elderly people randomized to the following TORC1 inhibitor treatment arms (all doses were QD):



- Everolimus 0.1mg + RTB101 10mg
- RTB101 10mg
- Everolimus 0.5mg
- Everolimus 0.1mg
- Placebo
- Both RTB101 10mg QD and RTB101 10mg + everolimus 0.1mg QD significantly reduced the incidence of all infections as well as respiratory tract infections (RTIs)
 - Reduction in RTIs:
 - RTB101 10mg: 42% reduction (p=0.006)
 - RTB101 10mg + everolimus 0.1mg: 36% reduction (p=0.01)
- Both RTB101 10mg and RTB101 10mg + everolimus 0.1mg upregulated antiviral gene expression in whole blood

QD = once daily res**TOR**bio 1

RTB101 offers new approach to harnessing the immune system to target multiple pathogens

The majority of pathogens detected in elderly people hospitalized for pneumonia are viruses for which **NO APPROVED THERAPIES** are currently available

Source: S. Jain et al., NEJM 2015 res**TOR**bio 1

Phase 2a to Phase 2b: Population, primary endpoint and dosing duration were modified

Phase 2a

POPULATION:

Healthy, 65 and older

85 and older 65 and older w/ asthma

Phase 2b

65 and older w/ diabetes

65 and older w/ COPD

65 and older, smokers

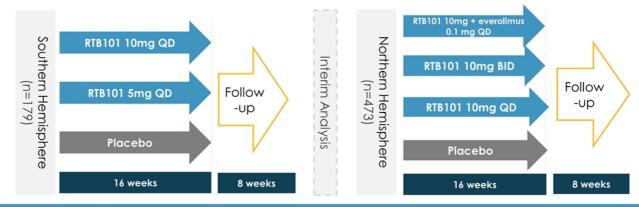
PRIMARY ENDPOINT:

Self-reported

RTIs

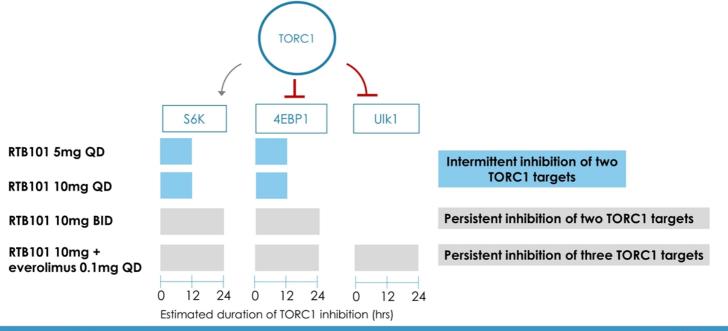
Laboratory-Confirmed

DOSING DURATION:


6 weeks

16 weeks

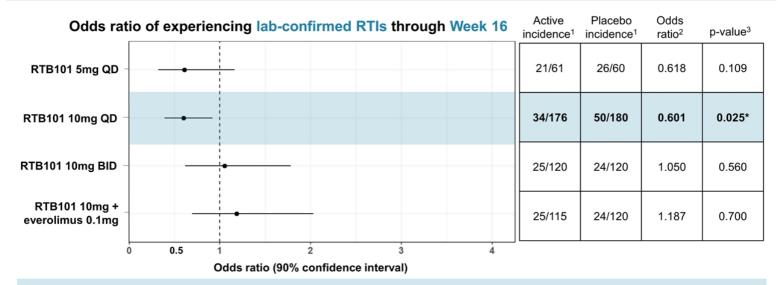
Goal: Define patient population for Phase 3 program


Phase 2b design

- Primary Endpoint: Reduction in the percentage of patients with laboratory-confirmed RTIs through week 16
- Population: Elderly subjects at increased risk of RTI-associated morbidity and mortality, defined as:
 - ≥ 85 years of age
 - 65-84 years of age with one or more comorbidities including:
 - Asthma
 - Chronic obstructive pulmonary disease (COPD)
 - Type 2 diabetes mellitus (T2DM)
 - Current smoker

QD = once daily; BID = fwice daily

Dosing regimens in Phase 2b estimated to result in different duration and spectrum of TORC1 inhibition



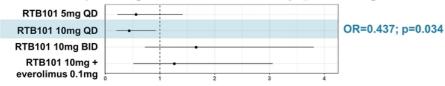
QD = once daily; BID = twice dail[,]

res**TOR**bio

20

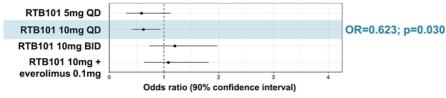
Odds ratio supports dose selection and potential efficacy of RTB101 10mg QD

RTB101 10mg QD demonstrated a 30.6% reduction in the percentage of patients with laboratory-confirmed RTIs compared to placebo

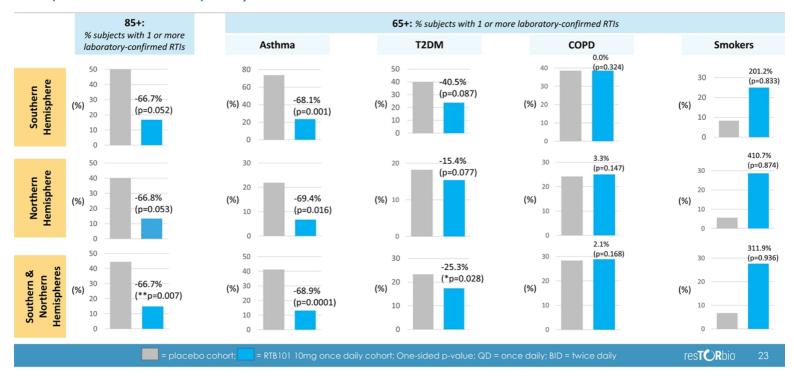

No. of patients in cohort with one or more laboratory-confirmed RTIs/No. of patients in cohort; 20dds ratio represents the odds of experiencing one or more

RTB101 10mg QD showed consistent benefit in multiple pre-specified analyses of lab-confirmed RTIs

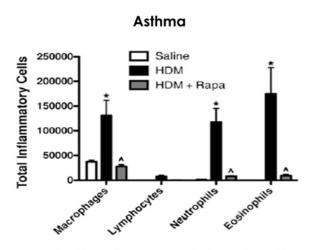
Odds ratio of experiencing lab-confirmed RTIs through Week 16 - primary endpoint



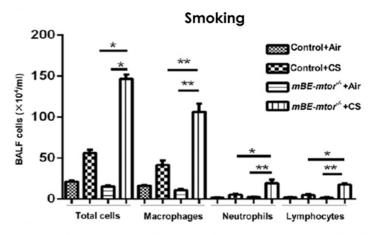
Odds ratio of experiencing severe lab-confirmed RTI symptoms through Week 16


RTB101 10mg QD associated with statistically significant reductions across three different analyses of laboratoryconfirmed RTIs: Week 16, severe RTIs and Week 24

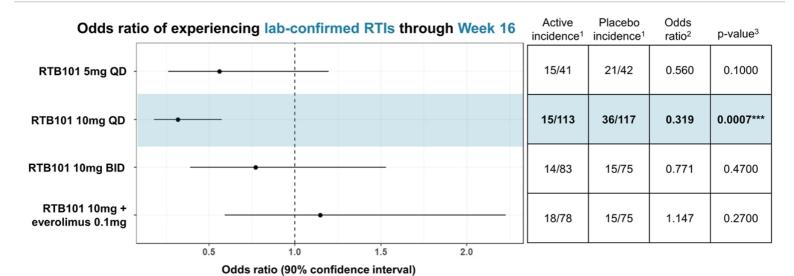
Odds ratio of experiencing lab-confirmed RTIs through Week 24



One-sided p-value; QD = once daily; BID = twice daily;
Odds ratio represents the odds of experiencing one or more event in the active treatment group versus the placebo group.


COPD and smokers were non-responding subgroups (prespecified analyses)

mTOR inhibition decreased airway inflammation in asthma and increased airway inflammation due to smoking



mTOR inhibition with rapamycin (Rapa) significantly **decreased** airway inflammation in a preclinical asthma model in which mice were exposed to intranasal house dust mites (HDM)¹

Disruption of mTOR selectively in bronchial epithelial cells (mBE-mtor-/-) significantly **increased** cigarette smoke (CS)-induced lung inflammation in a COPD model in which mice were exposed to cigarette smoke for 6 months²

A significant reduction in the incidence of laboratory-confirmed RTIs was observed in subjects 65+ (excluding smokers/COPD patients)

Phase 2 clinical studies enrolling > 900 elderly subjects demonstrate potential efficacy of RTB101 10mg QD

Study	Patient population	RTB101 10mg QD efficacy	
Phase 2a	264 healthy elderly	42% reduction in the rate of RTIs (p=0.006)	
Phase 2b	652 high-risk elderly	30.6% reduction in the percent of patients with lab-confirmed RTIs (p=0.025)	
		56.9% reduction in the percent of patients with lab-confirmed RTIs, excluding smokers/COPD patients (p=0.007)	

QD = once daily res**TOR**bio

RTB101 was well-tolerated in high-risk elderly patients through Week 24

- Adverse events (AEs) were balanced between the RTB101 10mg QD and placebo cohorts
- 1 unrelated death occurred in the RTB101 10mg QD cohort (patient was hit by car while riding a bicycle), 1 unrelated death occurred in the RTB101 10mg BID cohort and 1 unrelated death occurred in the placebo cohort (both from unknown causes)

	RTB101 10mg QD	Placebo
Serious AEs (% of patients)	4.5%	7.8%
Discontinued study drug due to an AE (% of patients)	5.1%	5.6%
Number of severe AEs	12	25

QD = once daily; BID = twice daily

res**TOR**bio

27

Market Opportunity in RTIs

RTIs in the elderly represent a significant healthcare burden

- Mortality from RTIs is higher than mortality from colorectal, pancreatic, breast or prostate cancer¹
- RTIs are the 4th most common cause for hospitalization in 65+ (2nd in 85+)²
- RTIs cause the majority of asthma exacerbations in the elderly³
- The majority of RTIs are caused by viruses for which there are no approved therapies⁴
- Decreasing the incidence of RTIs in the elderly may significantly decrease health care costs

Estimated number of elderly that may benefit from RTB101 in key geographies

	US	EU5	JP	CN
# Elderly People without COPD and who are non-smokers*	40M	53M	29M	77M
Elderly (65-84 years old) with asthma:	3.2M	3.3M ¹	$2.1M^{2}$	$2.5M^{3}$
Very elderly (85+ years old):	6.5M	9.3M	5.5M	8.9M

Survey of 100 physicians to determine potential usage in the target patient populations

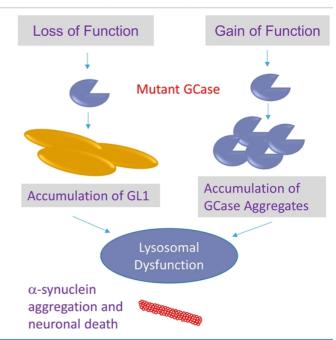
Physician survey*: Expected use in target populations

% Reduction	Estimated $\%$ prescribed in patients (patient-weighted means)			
in RTI	≥85	65-84 with asthma	65-84 with comorbidities	
25%	33%	36%	36%	
33%	41%	44%	47%	
40%	46%	48%	51%	

*Respondent background (n=100):

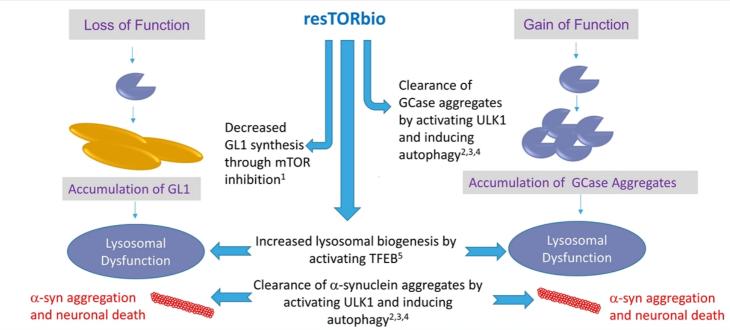
Medical Specialty	
Geriatrics	25
Primary Care	50
Pulmonologist	25

Practice characteristics			
Years practicing medicine	Avg 19 (median 19.5, range 6-33)		
# pts ≥ 65 seen/month	Avg 250 (median 220, range 80-600)		
% services billed to Medicare	Avg 63% (median 65%, range 30-100%)		


Ameliorating Neurodegenerative Diseases GBA Parkinson's Disease

res**T()R**hic

GBA mutation in Parkinson's disease (PD) leads to α -synuclein aggregation and neuronal cell death


Disease cascade:

- GBA is a gene encoding the lysosomal enzyme glucocerebrosidase (GCase)
- Mutant GCase may contribute to PD pathogenesis through a loss or gain of function:
 - Loss of function: Decreased GCase activity leading to an accumulation of its lipid substrate glucosylceramide (GL1) that disrupts lysosomal function¹
 - Gain of function: Accumulation of misfolded GCase aggregates that disrupt lysosomal function²
- Disruption of lysosomal function prevents clearance of aggregated a-synuclein and leads to neuronal death

Mazzulli, J. R., et al. (2011). Cell 146(1): 37-52; ²Cullen, V., et al. (2011). Annals of Neurology 69(6): 940-953.

resTORbio GBA PD program potential benefits to GBA PD patients (both loss or gain of function GBA mutations)

Guri, Y., et al. (2017). Cancer Cell 32(6); 807-823; ²Decressac, M., et al. (2013). Proc Natl Acad Sci USA 110(19); E1817-1826; ³ Cullen, V., et al. (2011). Ann Neurol 69(6); 940-953; ¹Kinghorn, K.J., et al. (2016). J Neurosci 36(46); 11654-11670; ⁵Roczniak-Ferguson, A., et al. (2012). Sci Signal 5(228); ra42.

res**TOR**bio

Phase 1b/2a Parkinson's disease trial design

	Randomized, Placebo-Controlled Phase 1b/2a Study (4-week dosing)		
Design	 Mild PD patients (mH&Y I-II) with or without GBA mutations 		
	 On standard of care PD drugs 		
	Once weekly dosing		
Study Size	N=45 (2:1 randomization)		
	Primary endpoint:		
	 Safety and tolerability 		
	Secondary endpoint:		
Key Endpoints	 Exposure in blood, plasma and CSF 		
	Exploratory endpoints:		
	 Biomarkers in plasma and CSF 		
	 Clinical assessments, wearables 		

Cohort	RTB 101 dose (mg)	Sirolimus dose (mg)	
	4000 (1116/	4000 (1118/	
1	300	0	
2	0	2	
3	300	2	
4	300	4	
5	300	6	

Study initiation planned for 1Q19

Near term milestones and financials

Milestones

Q1 2019	End of Phase 2 meeting with the FDA
Q1 2019	Initiate Phase 1b/2a study in Parkinson's disease
H1 2019	Initiate Phase 3 program for reducing the incidence of RTIs

Financials

Cash, cash equivalents and marketable securities were \sim \$115 million as of September 30, 2018

resTORbio highlights

Targeting the biology of aging

- Lead clinical candidate, RTB101, is the most advanced selective TORC1 inhibitor
- TORC1 inhibition improves the function of aging organ systems including the immune, neurologic, and cardiovascular systems

Positive results in Phase 2b to improve immune function and reduce the incidence of RTIs

- 30.6% reduction in the percentage of patients with laboratory-confirmed RTIs (p=0.025)
- 52.1% reduction in percentage of patients with severe laboratory-confirmed RTI symptoms (p=0.034)
- Successfully defined dose and patient population for Phase 3 program
- End-of-Phase 2 meeting with the FDA expected in 1Q19; Plan to initiate Phase 3 program in 1H19
- RTIs are the 4th most common cause of hospitalization in people 65+; 2nd in 85+ (US)

Data-driven approach to expand into additional aging-related indications

- Improving neurologic function: Plan to initiate Phase 1b/2a study in Parkinson's disease in 1Q19
- · Building a pipeline targeting multiple mechanisms underlying aging

RTI = respiratory tract infection

res**TOR**bio

Extensive genetic validation that TORC1 Inhibition extends lifespan across species

- 1) Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001;292(5515):288-290.
- 2) Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. *FEBS Lett*. 2004; 557(1–3):136–142.
- 3) Kaeberlein M, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310(5751):1193-1196.
- 4) Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. *Cell Metab*. 2007; 5(4):265–277.
- 5) Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620.
- 6) Jia K, Chen D, Riddle DL. The TOR pathway inter- acts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. *Development*. 2004;131(16):3897–3906.
- 7) Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. *Aging Cell*. 2007;6(1):95–110.
- 8) Pan KZ, et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell. 2007;6(1):111-119.
- 9) Robida-Stubbs S, et al. TOR Signaling and rapamy- cin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713-724.
- 10) Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. *Curr Biol.* 2004;14(10):885–890.
- 11) Luong N, et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab. 2006;4(2):133-142.
- 12) Zid BM, et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell. 2009;139(1):149–160.
- 13) Selman C, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 2009;326(5949):140-144.
- 14) Lamming DW, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. *Science*. 2012; 335(6076):1638–1643.

References for number of elderly people without COPD and who are non-smokers

US:

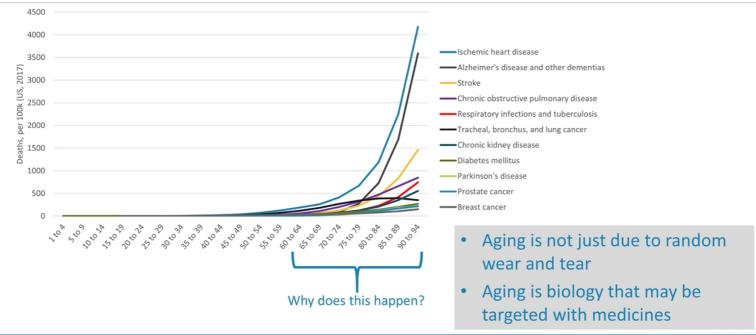
- 1. 4,038,000 elderly people estimated to be smokers in the US. U.S. NHIS 2017, https://www.cdc.gov/nchs/nhis/SHS/tables.htm (accessed Jan 5, 2019), Table A-12b.
- 2. Prevalence of COPD in the elderly estimated at 14.2%. Hanania, N. et al, 2010 "COPD in the Elderly Patient" https://www.medscape.com/viewarticle/730813_2 (accessed Jan 5, 2019)
- 3. 14.1% of current smokers were assumed to have COPD. Cunningham, T.J., et al., COPD, 2015. 12(3): p. 276-86.
- 4. Size of U.S. elderly population estimated at 50,858,679 in 2017. U.S. Census Bureau. https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml? (accessed Jan 5, 2019)

Europe:

- 1. Smoking prevalence in the elderly in each European country. Eurostat database, http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=hlth_ehis_sk3e&lang=en (accessed Jan 5, 2019)
- 2. COPD prevalence in the elderly estimated at 14.2%. Raherison, C. and P.O. Girodet, Epidemiology of COPD. Eur Respir Rev, 2009. 18(114): p. 213-21.
- 3. 29.6% & 16.1% of COPD patients aged 65-75 & 75 and over, respectively estimated to be current smokers. Worth, H., et al., The 'real-life' COPD patient in Germany: The DACCORD study. Respir Med. 2016, 111:p. 64-71.
- 4. Size of elderly population in each European country. UN Data, United Nations Statistics Division, http://data.un.org/Data.aspx?d=POP&f=tableCode%3A22 (accessed Jan 5, 2019) Japan:
- Smoking prevalence in people aged 60 and over in Japan (21.2% in men, 5.6% in women). Japan Tobacco Inc., JT's Annual Survey Finds 18.2 % of Japanese Adults Are Smokers. 2017. https://www.jt.com/media/news/2017/pdf/20170727 E02.pdf (accessed Jan 5, 2019)
- COPD prevalence in people aged 60 and over in Japan (11.5% of men, 5.8% of women); 17% & 0% of male and female current smokers, respectively, estimated to have COPD. Takemura, H., et al., Prevalence of COPD in Japanese People on Medical Check-Up. Journal of Experimental Medicine, 2005. 207: p. 41-50.
- Size of elderly population estimated at 35,228,000 (15,294,000 men, 19,933,000 women). E-Stat, Portal Site of Official Statistics of Japan. https://www.e-stat.go.jp/en/stat-search/files?page=1&layout=datalist&toukei=00200524&fstat=00000090001&cycle=1&year=20180&month=12040606&tclass1=000001011678 (accessed Jan 5, 2019)China:

China:

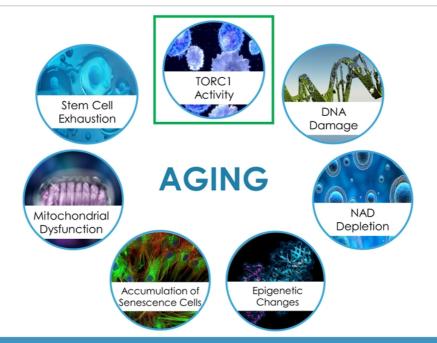
- Smoking prevalence in the elderly in China estimated at 22.7%. Li, Q., J. Hsia, and G. Yang, Prevalence of Smoking in China in 2010. New England Journal of Medicine, 2011. 364(25): p. 2469-2470.
- 2. COPD prevalence in the elderly; COPD prevalence among current smokers. Fang, L., et al., Chronic obstructive pulmonary disease in China: a nationwide prevalence study. The Lancet Respiratory Medicine, 2018. 6(6): p. 421-430.
- 3. Size of elderly population in China by age. https://www.populationpyramid.net/china/2016/ (accessed Jan 5, 2019)


Forward-looking statements

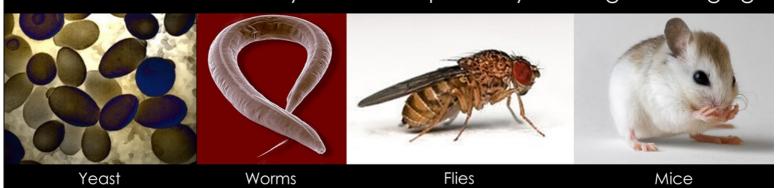
This presentation may contain "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, statements regarding the safety, efficacy and regulatory and clinical progress of our product candidates, including RTB101 alone and in combination with everolimus or sirolimus. All such forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," or "continue," and other similar expressions are intended to identify forward-looking statements. Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, our clinical results and other future conditions. All statements other than statements of historical facts contained in this presentation, including statements regarding future results of operations and financial position, business strategy, current and prospective product candidates, planned clinical trials and preclinical activities, including the initiation, timing, progress and results of our preclinical and clinical studies and our research and development programs, product approvals, research and development costs, current and prospective collaborations, timing and likelihood of success, including our ability to advance RTB101 alone and in combination with everolimus or sirolimus into, and successfully complete, clinical studies, timing of the end-of-Phase 2 meeting with the U.S. Food and Drug Administration, and the timing or likelihood of regulatory fillings and approvals, expectations regardin

These statements are also subject to a number of material risks and uncertainties that are discussed in the section entitled "Risk Factors" in resTORbio's annual report on Form 10-K for the fiscal year ended December 31, 2017, as well as discussions of potential risks, uncertainties, and other important factors in resTORbio's subsequent filings with the Securities and Exchange Commission. Any forward-looking statement speaks only as of the date on which it was made. Neither we, nor our affiliates, advisors, or representatives, undertake any obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While we believe these third-party sources to be reliable as of the date of this presentation, we have not independently verified, and we make no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while we believe our own internal research is reliable, such research has not been verified by any independent source.


Aging is the biggest risk factor for most chronic diseases

Global Burden of Disease Collaborative Network, Global Burden of Disease Study 2017 (GBD 2017) Results


res**TOR**bio

resTORbio is targeting the biology of aging

The TORC1 pathway

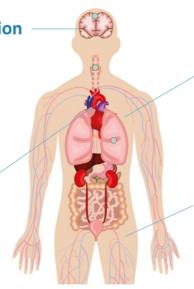
TORC1 is an evolutionarily conserved pathway that regulates aging

iource: Lamming, Dudley W., et al. (2013) Journal of Clinical Investigation 123 (3): 980–989.

Extensive genetic validation that TORC1 inhibition extends lifespan across species

Species	Genetic Manipulation to Inhibit mTOR		
Yeast	SCH9 (Akt/S6K homolog) insertional mutant 1		
	SCH9 (Akt/S6K homolog) deletion 1		
	SCH9 (Akt/S6K homolog) insertional mutant 2		
	SCH9 (Akt/S6K homolog) deletion ²		
	TOR1 deletion ³		
	TOR1 deletion 4		
C. elegans	TOR (let-363) RNAi ⁵		
•	Raptor (daf-15) heterozygous 6		
	S6K (rsks-1) RNAi 7		
	S6K (rsks-1) deletion mutant ⁷		
	TOR (let-363) RNAi 7		
	S6K (rsks-1) RNAi ⁸		
	S6K (rsks-1) deletion mutant ⁸		
	TOR (let-363) RNAi ⁸		
	Raptor (daf-15) RNAi ⁹ RagGTPase (raga-1) RNAi ⁹		
	RagGTPase (raga-1) RNAi 9		
	Rheb (rheb-1) RNAi 9		
D. melanogaster	dTSC1 overexpression 10		
	dTSC2 overexpression 10		
	dTOR FRB domain (dominant negative) 10		
	dS6K dominant negative 10		
	DTOR mutant (hypomorph) 11		
	d4E-BP overexpression 12		
	d4E-BP weak activated 12		
	d4E-BP strong activated 12		
M. musculus	Loss of S6K1 13		
	Mtor*/-Mlst8*/- genotype 14		

Corresponding citations can be found on slide 48

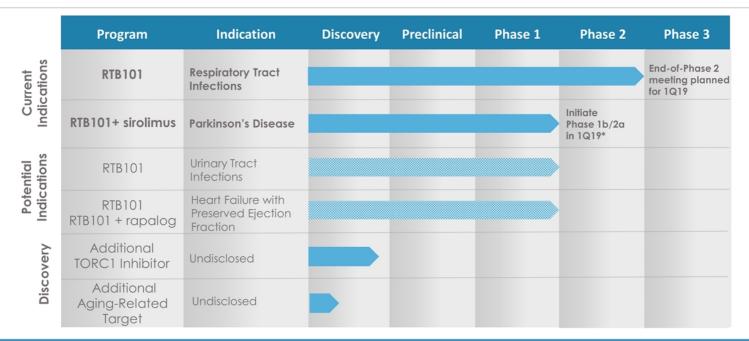

TORC1 inhibition may improve the function of multiple aging organ systems

Improved Neurologic Function

Tain et al., *Nature Neuroscience*, 2009 Malagelada et al., *J Neurosci*, 2010 Spilman et al., *PLoS ONE*, 2010 Halloran et al., *Neuroscience*, 2012 Majumder et al., *Aging Cell*, 2012 Neff et al., *JCI*, 2013

Reversal of aging-related cardiac dysfunction

Flynn et al., Aging Cell, 2013 Dai et al., Aging Cell, 2014 Chiao et al., Aging, 2016


Reversal of aging-related immune dysregulation

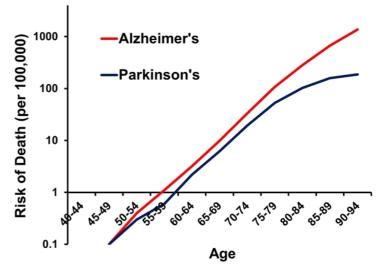
Chen et al., Science Sig, 2009 Selman et al., Science, 2011 Neff et al., JCI, 2013 Hurez et al., Aging Cell, 2015

Improvement in physical activity

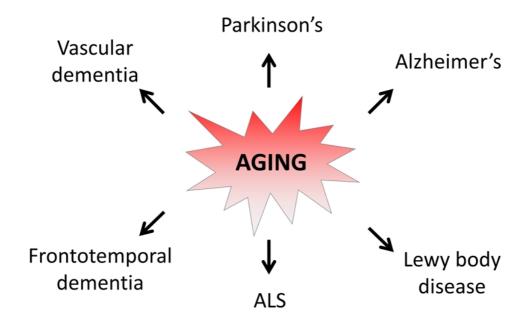
Selman et al., Science, 2011 Harrison et al., Nature, 2009 Wilkinson et al., Aging Cell, 2014 Flynn et al., Aging Cell, 2013

Most advanced pipeline targeting aging-related diseases

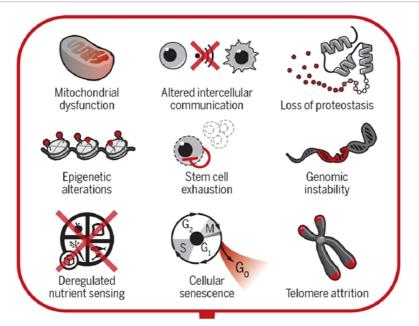
For heart failure with preserved ejection fraction, Parkinson's Disease and certain other infections, we may be required to file an investigational new drug application or IND, prior to initiating Phase 2 clinical trials. We expect to have the ability to initiate these Phase 2 clinical trials without the need to conduct prior Phase 1 trials.

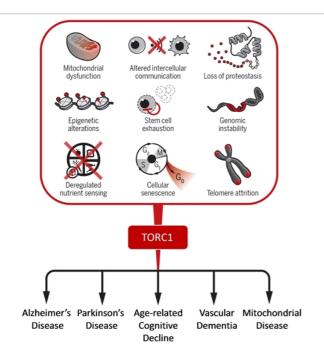

TORC1:

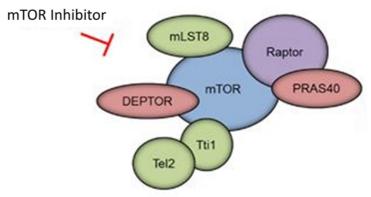
A Compelling Target for Neurodegenerative Diseases


Matt Kaeberlein, PhD
Department of Pathology
University of Washington

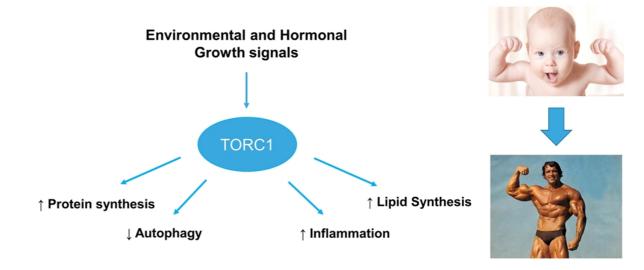
Age is the greatest risk factor for neurodegenerative disease



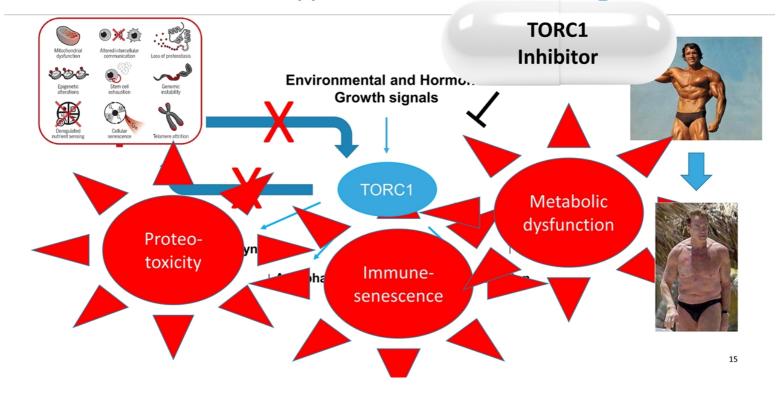

The biology of aging drives neurodegenerative disease


We now better understand the biology of aging

TORC1 connects aging with neurodegenerative disease



TORC1 = mTOR Complex 1



(Adapted from Oncogene 36:2191 2017)

TORC1 is critical when we are young

TORC1 inhibition may delay aging TORC1 becomes hyperactivated as we get old

TORC1 inhibition improves the function of aging organ systems in multiple mammalian species

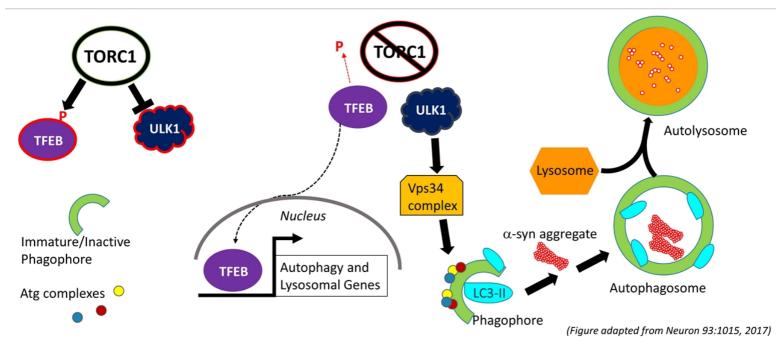
- Inhibition of TORC1 increases lifespan and improves immunologic, neurologic and cardiac function in aging mice
- Inhibition of TORC1 reverses agerelated decline in cardiac function in pet dogs
- Inhibition of TORC1 improves immune function in elderly people (resTORbio)

Aging Cell (2012) 11, pp675-682

Rapamycin slows aging in mice

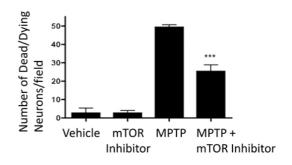

John E. Wilkinson,¹ Lisa Burmeister,² Susan V. Brooks,³ Chi-Chao Chan,⁴ Sabrina Friedline,² David E. Harrison,⁵ James F. Hejtmancik,⁶ Nancy Nadon,⁷ Randy Strong,⁸ Lauren K. Wood,³ Maria A. Woodward⁹ and Richard A. Miller²

INFECTIOUS DISEASE


TORC1 inhibition enhances immune function and reduces infections in the elderly

Joan B. Mannick¹*†, Melody Morris¹, Hans-Ulrich P. Hockey², Guglielmo Roma³, Martin Beibel³, Kenneth Kulmatycki¹, Mollie Watkins¹, Tea Shavlakadze¹, Weihua Zhou¹, Dean Quinn⁴, David J. Glass¹, Lloyd B. Klickstein¹* TORC1 inhibition has therapeutic benefit in multiple neurodegenerative diseases

- TORC1 inhibition delays or reverses Alzheimer's disease in multiple mouse models
- TORC1 inhibition effective in multiple mouse and fly models of Parkinson's disease
- Enhanced autophagy leading to clearance of aggregated such as amyloid-β and α–synuclein likely the primary mechanism

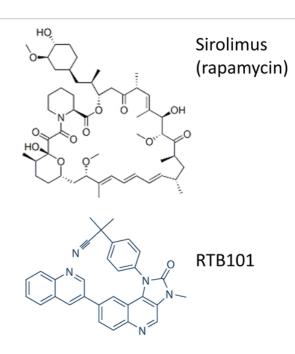


TORC1 is a Master Negative Regulator of Autophagy

TORC1 inhibition may be of particular benefit in Parkinson's Disease

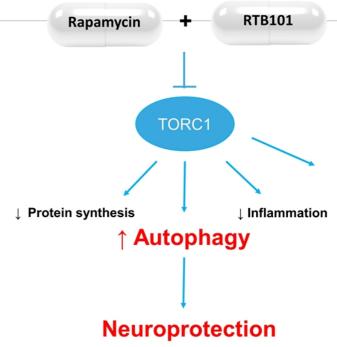
- Nearly 200 papers published with "TORC1" (or "mTOR") and "Parkinson's" in the title/abstract
- Activation of autophagy is the favored mechanism of action
- Protects against α-synuclein toxicity
- Prevents neuron loss
- Improves motor function

(J Neurosci 30:1166, 2010)


Classes of TORC1 Inhibitors

Rapalogs:

- · Allosteric inhibitors of TORC1
- Chronic inhibition can also suppress TORC2
- Inhibit only some targets downstream of TORC1
- Approved for use in oncology indications and to prevent organ transplant rejection
- The class of TORC inhibitors used in most PD models


Catalytic inhibitors

- ATP competitive catalytic site mTOR inhibitors
- Inhibit all targets downstream of TORC1
- May have advantages over rapalogs for PD

Rapamycin is an imperfect TORC1 inhibitor

- Rapamycin does not consistently induce autophagy
- Chronic rapamycin treatment also inhibits TORC2 leading to side effects
- RTB101 induces autophagy at high concentrations that are difficult to achieve in the CNS
- Co-administration of rapamycin reduces the concentration of RTB101 needed to induce autophagy

Targeting Autophagy in Parkinson's Disease

Roy Alcalay, MD, MS

Florence Irving Assistant Professor of Neurology Division of Movement Disorders Columbia University Medical Center

Disclosures

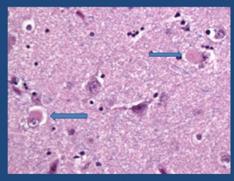
Funding:

Dr. Alcalay is funded by the Parkinson's Foundation, the National Institutes of Health (NS080915, NS094607), the Smart Foundation and the Michael J. Fox Foundation.

Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Denali, Biogen and Roche.

What is Parkinson's Disease?

• Prevalence:


• Parkinson's disease (PD) is the second most common neurodegenerative disease. Affects >1m Americans

• Clinical manifestations:

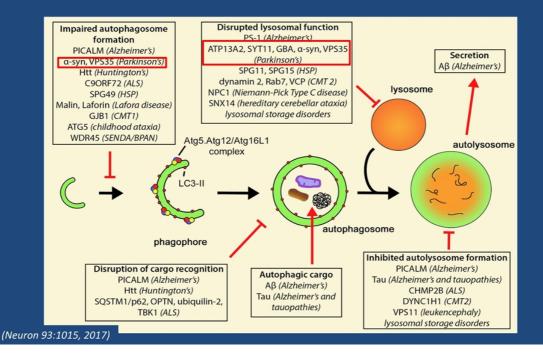
- Four cardinal motor symptoms:
 - Resting tremor
 - Bradykinesia (slowed movements)
 - Muscle rigidity
 - Postural instability

• Pathobiology:

- Loss of >50% of the neurons that produce the neurotransmitter dopamine in a specific area of the brain (substantia nigra)
- Protein aggregation (Lewy bodies)

Cortical Lewy bodies in idiopathic PD

PD: Non Motor Symptoms

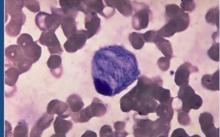

- Many patients develop non-motor symptoms including:
 - Autonomic dysfunction
 - Sleep problems (RBD)
 - Psychiatric symptoms: anxiety, depression
 - Impaired sense of smell
- Over 80% of affected individuals develop cognitive impairment over time.
- There are a variety of symptomatic treatments.
 There are no FDA approved disease-modifying treatments.

PD Biology

- PD is defined by neuronal degeneration with protein (alpha-synuclein, α -syn) aggregation
- Multiple genes have been linked to PD
- Many of them are in the autophagosome pathway

Gene Localizations Identified in PD						
Gene	Symbo			Chromosome		
PARK1	SNCA	α-synuclein	AD	4q22.1		
PARK2	PRKN	parkin (ubiquitin ligase)	AR	6q26		
PARK3	?	?	AD	2p13		
PARK4	SNCA	triplication α-synuclein	AD	4q22.1		
PARK5	UCH-L1	ubiquitin C-terminal hydrolase-L1	AD	4p13		
PARK6	PINK1	PTEN-induced kinase 1	AR	1p36.12		
PARK7	DJ-1	DJ-1	AR	1p36.23		
PARK8	LRRK2	leucine rich repeat kinase 2 (dardarin)	AD	12q12		
PARK9	ATP13A2	lysosomal ATPase	AR	1p36.13		
PARK10) ?	? (Iceland)	AR	1p32		
PARK11	L GIGYF2	GRB10-INTERACTING GYF PROTEIN 2	AD	2q37.1		
PARK12	? ?		X-R	Xq21-q25		
PARK13	3 HTRA2	serine protease	AD	2p13.1		
	PLA2G6	phospholipase A2 (INAD)	AR	22q13.1		
PARK15	FBXO7	F-box only protein 7	AR	22q12.3		
PARK16		Discovered by GWAS		1q32		
PARK17	VPS35	vacuolar protein sorting 35	AD	16q11.2		
PARK18	8 EIF4G1	initiation of protein synth	AD	3q27.1		
PARK19	DNAJC6	auxilin	AR	1p31.3		
PARK20	SYNJ1	synaptojanin 1	AR	21q22.11		
		o'to' e o				

Impaired Autophagy Genes in Neurodegenerative Diseases

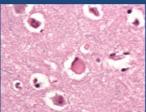

GBA/PD: A Genetically-linked form of PD

• Two mutations (homozygous mutations) in the GBA gene cause Gaucher disease, a lysosomal storage disorder

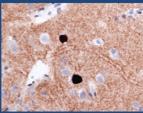
 Gaucher is caused because of significantly diminished glucocerebrosidase (GCase) activity

 A single GBA mutation (heterozygous mutation) is the most common genetic risk for PD

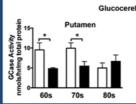
• 5-10% of PD patients carry a *GBA* mutation or variant (Gan-Or, 2015)

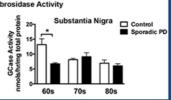

GBA: An Accelerated form of Idiopathic PD Clinical Similarities

- Motor signs are similar to idiopathic PD (iPD), but progress faster than idiopathic PD
- Cognitive impairment, loss of sense of smell, sleep disturbances and autonomic dysfunction are more common than in patients with idiopathic PD
- Good symptomatic motor response to symptomatic medication (L-dopa) like idiopathic PD
- No FDA approved interventions to slow disease progression

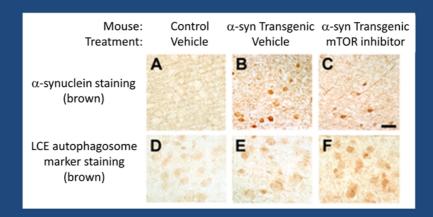

GBA: An Accelerated form of iPD

Histologic and Biochemical Similarities


- GBA/PD associated with higher amounts of α-syn deposition (Lewy bodies) in brain (an accelerated form of PD)
- GCase (the GBA protein product)
 expression and activity decreases in human brains with age



 α -syn in Lewy bodies



(Ann Clin Transl Neurol 2:433, 2015)

30

TORC1 Inhibition Increases Autophagosomes and Decreases α -syn

(PLoS one 5:e9313, 2010)

31

TORC1 inhibitor/PD Clinical Trials:

Why GBA/PD may be a good target for proof of concept/efficacy trials

All disease modification strategies for PD to date have failed.

- 1. Glucosylceramide (GCase substrate) is reduced by mTOR inhibition¹
- 2. GBA/PD is more homogenous. Strongly associated with α -syn pathology.
- 3. GBA/PD is faster progressing (earlier outcomes)

¹Cancer Cell 32, 807 e812, 2017

32

The TORC1 pathway

TORC1 is an evolutionarily conserved pathway that regulates aging

TORC1 inhibition extended lifespan and healthspan in multiple species

ource: Lamming, Dudley W., et al. (2013) Journal of Clinical Investigation 123 (3): 980–989.

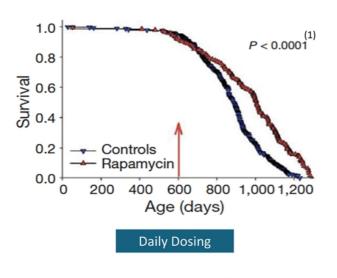
TORC1 inhibition may improve the function of multiple aging organ systems

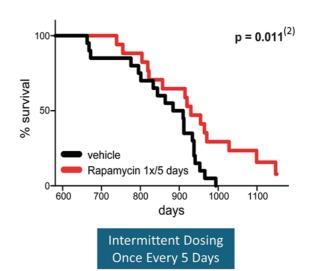
Improved Neurologic Function

Tain et al., *Nature Neuroscience*, 2009 Malagelada et al., *J Neurosci*, 2010 Spilman et al., *PLoS ONE*, 2010 Halloran et al., *Neuroscience*, 2012 Majumder et al., *Aging Cell*, 2012 Neff et al., *JCI*, 2013

Reversal of aging-related cardiac dysfunction

Flynn et al., *Aging Cell*, 2013 Dai et al., *Aging Cell*, 2014 Chiao et al., *Aging*, 2016

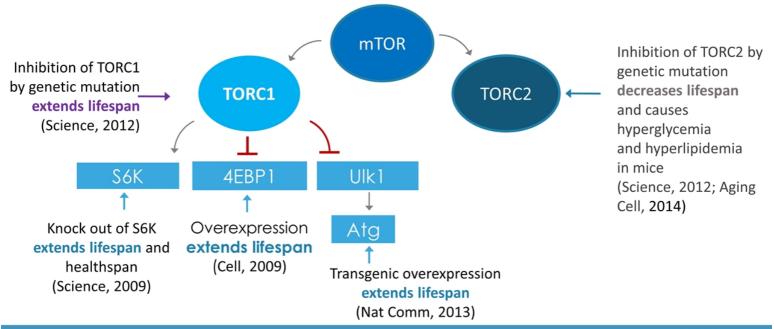

Reversal of aging-related immune dysregulation

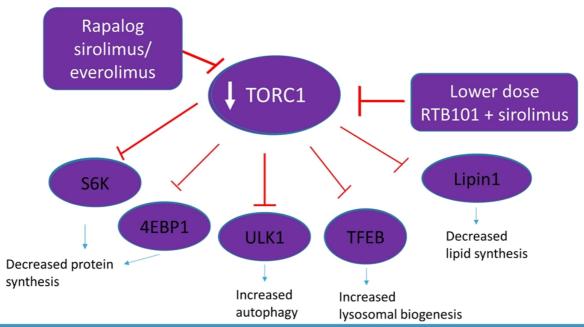

Chen et al., Science Sig, 2009 Selman et al., Science, 2011 Neff et al., JCI, 2013 Hurez et al., Aging Cell, 2015

Improvement in physical activity

Selman et al., *Science*, 2011 Harrison et al., *Nature*, 2009 Wilkinson et al., *Aging Cell*, 2014 Flynn et al., *Aging Cell*, 2013

TORC1 inhibitors extend lifespan in mice even when started late in life and given intermittently




Harrison et al. (2009) Nature, 460:392-396

Arriola Apelo et al. (2016) Gerontol A Biol Sci Med Sci, 71: 876-88

Selective inhibition of TORC1 may have therapeutic benefit for the treatment of aging-related diseases

Rapalogs lower the concentration of RTB101 needed to inhibit TORC1 in the brain and induce autophagy in animal models

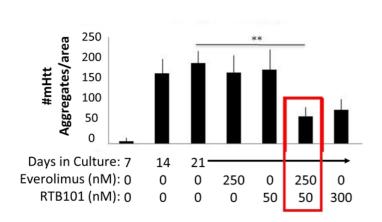
Potential mechanism underlying synergistic inhibition and autophagy activation by sirolimus + RTB101

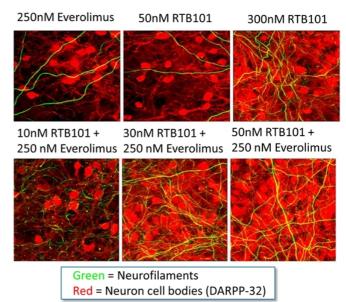
 Sirolimus may induce a conformation change in TORC1 that allows lower concentrations of RTB101 to inhibit TORC

RTB101 and sirolimus synergize to induce autophagy at low concentrations

% Auto	phagy	induct	ion
, , , , , , , ,	P		

	87.5	130.58	114.37	156.80	170.61	173.28	181.56	196.15	174.61	158.67	216.07
	43.8	91.48	71.47	123.06	118.25	166.88	154.73	189.63	194.12	190.70	214.89
(nM)	21.9	31.89	25.16	81.50	100.98	125.12	137.82	212.58	197.37	166.87	218.33
<u>u</u>	10.9	0.02	4.25	29.25	41.45	88.97	138.95	155.32	184.65	146.93	179.15
01	5.47	-12.14	-14.12	-1.11	8.36	44.22	81.09	103.23	143.72	120.56	123.57
RTB101	2.73	-12.10	-6.71	-0.19	-1.19	25.53	43.99	75.14	96.76	73.48	100.10
RT	1.37	-7.40	-17.37	0.03	0.09	13.03	29.69	41.98	54.65	60.23	68.35
	0.684	-23.25	-25.36	3.41	-2.42	5.87	16.31	26.84	52.55	33.51	31.80
	0.342	-16.81	-28.70	-7.67	-5.83	5.18	14.95	9.42	33.10	21.35	43.68
	0	-11.63	-20.72	-6.80	-6.46	-1.54	9.74	2.82	13.34	10.25	-4.02
		0.00000	0.00214	0.00854	0.0342	0.137	0.547	2.19	8.75	35.0	140
					c	:	- / 0.41				

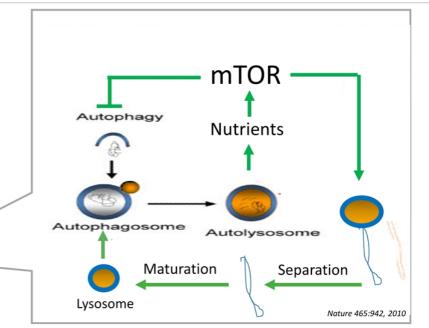

>50% <50%


Sirolimus (nM)

Higher scores indicate greater autophagy

Results shown are representative of 3 independent experiments

RTB101 synergizes with everolimus to clear mHtt protein aggregates and rescue striatal neurons



Intermittent dosing of TORC1 inhibitors may have better safety and efficacy than daily dosing

 Beneficial effects of rapamycin on lifespan can be achieved with dosing once every 5-7 days with reduced side effects¹

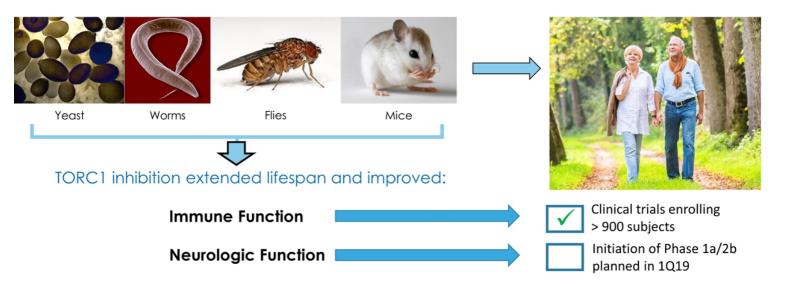
 Rapamycin administered 3x/week (intermittent mTOR inhibition) is required for autophagic lysosomal reformation

Ameliorating Neurodegenerative Diseases Parkinson's Disease

Phase 1b/2a Parkinson's disease trial design

	Randomized, Placebo-Controlled Phase 1b/2a Study (4-week dosing)				
Design	 Mild PD patients (mH&Y I-II) with or without GBA mutations 				
	 On standard of care PD drugs 				
	Once weekly dosing				
Study Size	N=45 (2:1 randomization)				
	Primary endpoint:				
	 Safety and tolerability 				
	Secondary endpoint:				
Key Endpoints	 Exposure in blood, plasma and CSF 				
	Exploratory endpoints:				
	 Biomarkers in plasma and CSF 				
	 Clinical assessments, wearables 				

Cohort	RTB 101 dose (mg)	Sirolimus dose (mg)
1	300	0
2	0	2
3	300	2
4	300	4
5	300	6


Study initiation planned for 1Q19

Summary

- TORC1 may be an important therapeutic target for several neurodegenerative diseases in which misfolded proteins aggregate and cause neuronal toxicity
- TORC1 inhibition has shown therapeutic benefit in multiple preclinical PD models
- TORC1 inhibition may be of benefit in PD by inducing autophagy and thereby clearing toxic proteins in neurons
- Combinations of TORC1 inhibitors (RTB101 and sirolimus) administered intermittently may provide the best approach to activating brain autophagy
- Planning to initiate a Ph1b/2a study in PD with RTB101 + sirolimus in 1Q19
- RTB101+ sirolimus may be of particular benefit to patients with GBA-PD

Targeting the biology of aging with TORC1 Inhibitors

Translation to humans with RTB101

Extensive genetic validation that TORC1 Inhibition extends lifespan across species

- 1) Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001;292(5515):288-290.
- 2) Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. *FEBS Lett*. 2004; 557(1–3):136–142.
- 3) Kaeberlein M, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310(5751):1193-1196.
- 4) Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. *Cell Metab*. 2007; 5(4):265–277.
- 5) Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620.
- 6) Jia K, Chen D, Riddle DL. The TOR pathway inter- acts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. *Development*. 2004;131(16):3897–3906.
- 7) Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. *Aging Cell*. 2007;6(1):95–110.
- 8) Pan KZ, et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell. 2007;6(1):111–119.
- 9) Robida-Stubbs S, et al. TOR Signaling and rapamy- cin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713-724.
- 10) Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. *Curr Biol*. 2004;14(10):885–890.
- 11) Luong N, et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab. 2006;4(2):133-142.
- 12) Zid BM, et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell. 2009;139(1):149–160.
- 13) Selman C, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 2009;326(5949):140-144.
- 14) Lamming DW, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. *Science*. 2012; 335(6076):1638–1643.