UNITED STATES SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

FORM 8-K

CURRENT REPORT
Pursuant to Section 13 or 15(d)
of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): January 7, 2019

RESTORBIO, INC.

(Exact name of registrant as specified in its charter)

Delaware (State or other jurisdiction of incorporation) 001-38359 (Commission 81-3305277 (I.R.S. Employer Identification No.)

500 Boylston Street, 12th Floor Boston, MA 02116 (Address of principal executive offices, including zip code)

(857) 315-5521 (Registrant's telephone number, including area code)

Not Applicable (Former Name or Former Address, if Changed Since Last Report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

Written communications	pursuant to	Rule 425	under the	Securities 1	Act (17	CFR 23	(0.425

 $\hfill \Box$ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} & \begin{tabular}{$

□ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))

Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§ 230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§ 240.12b-2 of this chapter).

Emerging growth company $\ oxtimes$

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act. \Box

Item 7.01. Regulation FD Disclosure.

resTORbio, Inc. (the "Company") from time to time presents and/or distributes to the investment community at various industry and other conferences slide presentations to provide updates and summaries of its business. A copy of its current corporate slide presentation (the "Presentation") is attached to this Current Report on Form 8-K as Exhibit 99.1. The Company undertakes no obligation to update, supplement or amend the materials attached hereto as Exhibit 99.1.

The information in Item 7.01 of this Form 8-K, including Exhibit 99.1 attached hereto, shall not be deemed "filed" for purposes of Section 18 of the Securities Exchange Act of 1934, as amended (the "Exchange Act") or otherwise subject to the liabilities of that section, nor shall it be deemed incorporated by reference in any filing under the Securities Act of 1933, as amended, or the Exchange Act, except as expressly set forth by specific reference in such a filing.

Item 9.01. Financial Statements and Exhibits.

(d) Exhibits

Exhibit No.

Description

99.1 <u>Corporate slide presentation of resTORbio, Inc., dated January 7, 2019.</u>

. .

SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

resTORbio, Inc.

Date: January 7, 2019

By: /s/ Chen Schor Chen Schor President and Chief Executive Officer

Forward-looking statements

This presentation may contain "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, statements regarding the safety, efficacy and regulatory and clinical progress of our product candidates, including RTB101 alone and in combination with everolimus or sirolimus. All such forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," or "continue," and other similar expressions are intended to identify forward-looking statements. Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, our clinical results and other future conditions. All statements other than statements of historical facts contained in this presentation, including statements regarding future results of operations and financial position, business strategy, current and prospective product candidates, planned clinical trials and preclinical activities, including the initiation, timing, progress and results of our preclinical and clinical studies and our research and development programs, product approvals, research and development costs, current and prospective collaborations, timing and likelihood of success, including our ability to advance RTB101 alone and in combination with everolimus or sirolimus into, and successfully complete, clinical studies, timing and likelihood of success, including our ability to advance RTB101 alone and in combination with everolimus or sirolimus into, and successfully complete, clinical

These statements are also subject to a number of material risks and uncertainties that are discussed in the section entitled "Risk Factors" in resTORbio's annual report on Form 10-K for the fiscal year ended December 31, 2017, as well as discussions of potential risks, uncertainties, and other important factors in resTORbio's subsequent filings with the Securities and Exchange Commission. Any forward-looking statement speaks only as of the date on which it was made. Neither we, nor our affiliates, advisors, or representatives, undertake any obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While we believe these third-party sources to be reliable as of the date of this presentation, we have not independently verified, and we make no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while we believe our own internal research is reliable, such research has not been verified by any independent source.

resTORbio highlights

Targeting the biology of aging

- Lead clinical candidate, RTB101, is the most advanced selective TORC1 inhibitor
- TORC1 inhibition improves the function of aging organ systems including the immune, neurologic, and cardiovascular systems

Positive results in Phase 2b to improve immune function and reduce the incidence of RTIs

- 30.6% reduction in the percentage of patients with laboratory-confirmed RTIs (p=0.025)
- 52.1% reduction in percentage of patients with severe laboratory-confirmed RTI symptoms (p=0.034)
- Successfully defined dose and patient population for Phase 3 program
- End-of-Phase 2 meeting with the FDA expected in 1Q19; Plan to initiate Phase 3 program in 1H19
- RTIs are the 4th most common cause of hospitalization in people 65+; 2nd in 85+ (US)

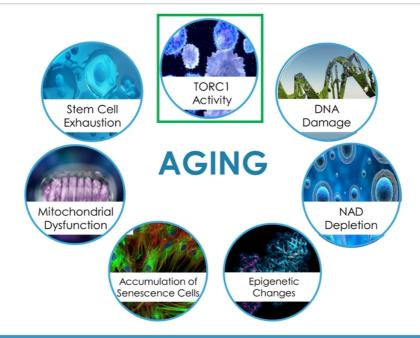
Data-driven approach to expand into additional aging-related indications


- Improving neurologic function: Plan to initiate Phase 2a study in GBA Parkinson's disease in 1Q19
- · Building a pipeline targeting multiple mechanisms underlying aging

RTI = respiratory tract infection

res**TOR**bio

વ


People age 65 and older are the fastest growing population globally and an increasing burden on healthcare systems¹

- 62% of people age 65 and older have 2 or more chronic diseases which represent the greatest challenge for healthcare systems in the 21st century²
- Healthcare expenditures for the elderly are 3-5x higher than for younger individuals (per capita; U.S.)³
- Aging is the biggest risk factor for most chronic diseases
- Increasing preclinical data demonstrate that aging is a modifiable risk factor regulated by biological pathways including the TORC1 pathway
- Medicines that target the biology of aging may represent a new class of medicine for treating and preventing diseases in the elderly

nited Nation Department of Economic and Social Affairs, Population Division. World Population Prospects. The 2004 Revision. New York: United Nations, 2005 in Why Population Aging Matters: A Global rspective; Salive ME. Epidemiol Rev. 2013;35:75-83; CMS.gov(2018), https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/nationalhealthexpenddata/nhe-fact-sheet.htm

Targeting the biology of aging

TORC1 is an evolutionarily conserved pathway that regulates aging

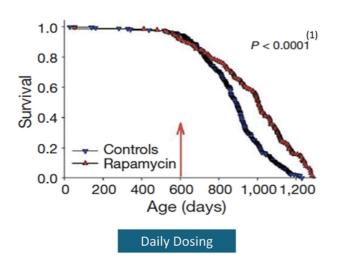
Mice

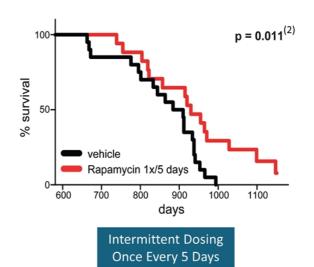
TORC1 inhibition extended lifespan and healthspan in multiple species

ource: Lamming, Dudley W., et al. (2013) Journal of Clinical Investigation 123 (3): 980–989

Extensive genetic validation that TORC1 inhibition extends lifespan across species

Species	Genetic Manipulation to Inhibit mTOR
Yeast SCH9 (Akt/S6K homolog) insertional mutant	
	SCH9 (Akt/S6K homolog) deletion 1
	SCH9 (Akt/S6K homolog) insertional mutant 2
	SCH9 (Akt/S6K homolog) deletion ²
	TOR1 deletion 3
	TOR1 deletion 4
C. elegans	TOR (let-363) RNAi ⁵
•	Raptor (daf-15) heterozygous 6
	S6K (rsks-1) RNAi 7
	S6K (rsks-1) deletion mutant 7
	TOR (let-363) RNAi 7
	S6K (rsks-1) RNAi ⁸
	S6K (rsks-1) deletion mutant 8
	TOR (let-363) RNAi 8
	Raptor (daf-15) RNAi 9
	RagGTPase (raga-1) RNAi 9
	RagGTPase (raga-1) RNAi 9
	Rheb (rheb-1) RNAi 9
D. melanogaster	dTSC1 overexpression 10
-	dTSC2 overexpression 10
	dTOR FRB domain (dominant negative) 10
	dS6K dominant negative 10
	DTOR mutant (hypomorph) 11
	d4E-BP overexpression 12
	d4E-BP weak activated 12
	d4E-BP strong activated 12
M. musculus	Loss of S6K1 13
	Mtor+/-Mlst8+/- genotype 14





Corresponding citations can be found on slide 43

TORC1 inhibitors extend lifespan in mice even when started late in life and given intermittently

Harrison et al. (2009) Nature, 460:392-396

Arriola Apelo et al. (2016) Gerontol A Biol Sci Med Sci, 71: 876-88

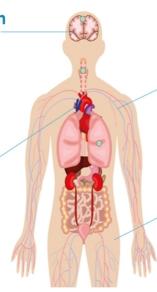
TORC1 may become dysregulated and overactive in some aging organ systems

- Feeding activates TORC1 leading to increased protein and lipid synthesis
- Fasting inhibits TORC1 leading to upregulation of protective pathways

 TORC1 activity remains aberrantly elevated during fasting, preventing upregulation of protective pathways

Sengupta et al., Nature 2010

Decreasing TORC1 activity may upregulate protective pathways and may have benefits in aging-related diseases

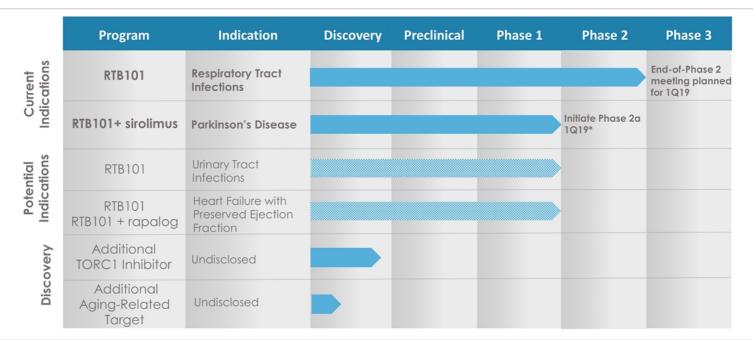

TORC1 inhibition may improve the function of multiple aging organ systems

Improved Neurologic Function

Tain et al., *Nature Neuroscience*, 2009 Malagelada et al., *J Neurosci*, 2010 Spilman et al., *PLoS ONE*, 2010 Halloran et al., *Neuroscience*, 2012 Majumder et al., *Aging Cell*, 2012 Neff et al., *JCI*, 2013

Reversal of aging-related cardiac dysfunction

Flynn et al., *Aging Cell*, 2013 Dai et al., *Aging Cell*, 2014 Chiao et al., *Aging*, 2016

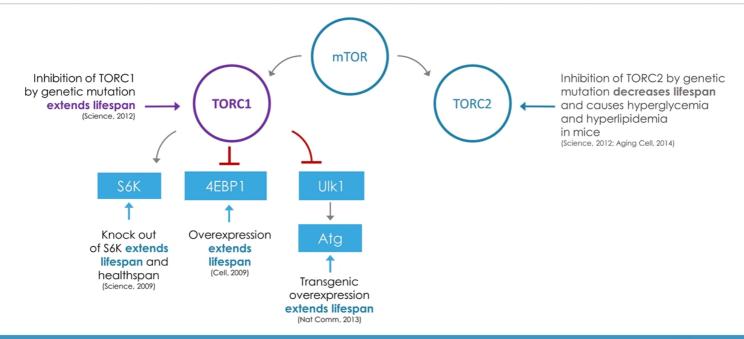

Reversal of aging-related immune dysregulation

Chen et al., Science Sig, 2009 Selman et al., Science, 2011 Neff et al., JCI, 2013 Hurez et al., Aging Cell, 2015

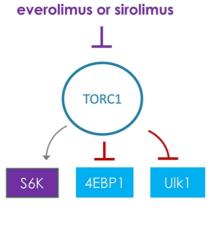
Improvement in physical activity

Selman et al., *Science*, 2011 Harrison et al., *Nature*, 2009 Wilkinson et al., *Aging Cell*, 2014 Flynn et al., *Aging Cell*, 2013

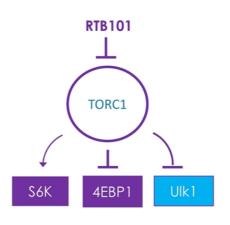
Most advanced pipeline targeting aging-related diseases



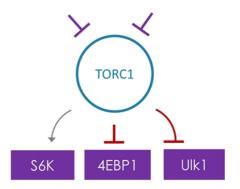
For heart failure with preserved ejection fraction, Parkinson's Disease and certain other infections, we may be required to file an investigational new drug application by IND, prior to initiating Phase 2 clinical trials without the need to conduct prior Phase 1 trials.


TORC1 Pathway

Selective inhibition of TORC1 may have therapeutic benefit for the treatment of aging-related diseases



Spectrum of TORC1 inhibition with RTB101 and rapalog


Inhibiting the phosphorylation of 1 target of TORC1

= indicates phosphorylation is inhibited

Inhibiting the phosphorylation of 2 targets of TORC1

RTB101 + everolimus or sirolimus

Inhibiting the phosphorylation of 3 targets of TORC1

RTB101: First-in-class immunotherapy targeting TORC1

Best validated target for aging-related diseases

- · Extensive body of literature that TORC1 pathway regulates aging
- RTB101 is a potent inhibitor of TORC1
- · Potential to treat multiple diseases of aging

Robust safety profile

- · Over 1,000 patients dosed
- Dose for improving immune function is 1/120th of the maximum tolerated dose in humans

Positive Phase 2a and Phase 2b clinical trial results

 Phase 2a and 2b clinical trials in 900 elderly subjects demonstrated that RTB101 10mg once daily improved immune function and reduced the incidence of respiratory tract infections

Convenient administration

- Orally administered, small molecule
- Half-life of approximately 4-6 hours
- Potential to transiently reduce TORC1 activity

Improving Immune Function Respiratory Tract Infections (RTIs)

Improving immune function to reduce the incidence of RTIs in the elderly

Fastest Growing Population¹

The elderly is the fastest growing population across the globe

1.4 Episodes/Year²

Elderly subjects have an average of 1.4 episodes of RTIs per person per year

4th Most Common Cause of Hospitalization³

RTIs are the 4th most common cause of hospitalization in people age 65+ (US); 2nd in 85+ (US)

8th Leading Cause of Death⁴

RTIs are the 8th leading cause of death in people age 65+ (US); 7^{th} in 85+ (US)

Antibiotics Ineffective⁵

Antibiotics are often prescribed indiscriminately to treat RTIs, leading to potential side effects and contributing to growing antibiotic resistance

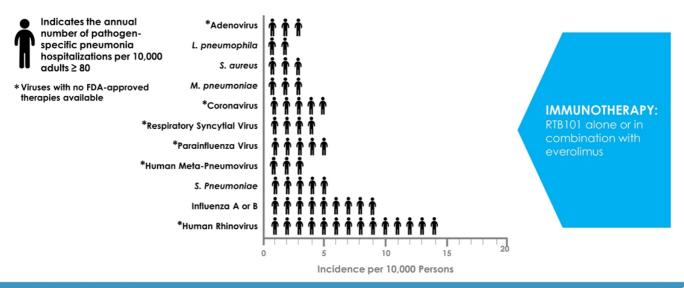
No Approved Therapies⁶

Viruses for which there are no approved therapies cause the majority of RTIs including community-acquired pneumonia in subjects ≥80 years

Sources: ¹The Older Population 2010 US Census Briefs, National Center for Health Statistics Data Brief 2015; ²JAMA, August 14, 2002 – Vol 288, No 6; BMJ 1997; 315:1060-4; ³Pfunter, . (2013) HCUP Statistical Brief #162; ⁴ National Vital Statistics Report (2018), Deaths, Final Data for 2016; ⁵JAMA. 2016; 315(17): 1864-1873; ⁶Jain, S., et al., NEJM (2015) 373: 415-427.

Results of Phase 2a trial

 264 mostly healthy elderly people randomized to the following TORC1 inhibitor treatment arms (all doses were QD):



- Everolimus 0.1mg + RTB101 10mg
- RTB101 10mg
- Everolimus 0.5mg
- Everolimus 0.1mg
- Placebo
- Both RTB101 10mg QD and RTB101 10mg + everolimus 0.1mg QD significantly reduced the incidence of all infections as well as respiratory tract infections (RTIs)
 - Reduction in RTIs:
 - RTB101 10mg: 42% reduction (p=0.006)
 - RTB101 10mg + everolimus 0.1mg: 36% reduction (p=0.01)
- Both RTB101 10mg and RTB101 10mg + everolimus 0.1mg upregulated antiviral gene expression in whole blood

QD = once daily res**TCR**bio 1

RTB101 offers new approach to harnessing the immune system to target multiple pathogens

The majority of pathogens detected in elderly people hospitalized for pneumonia are viruses for which **NO APPROVED THERAPIES** are currently available

Source: S. Jain et al., NEJM 2015 res**TOR**bio 1

Phase 2a to Phase 2b: Population, primary endpoint and dosing duration were modified

Phase 2a

POPULATION:

Healthy, 65 and older

85 and older 65 and older w/ asthma

Phase 2b

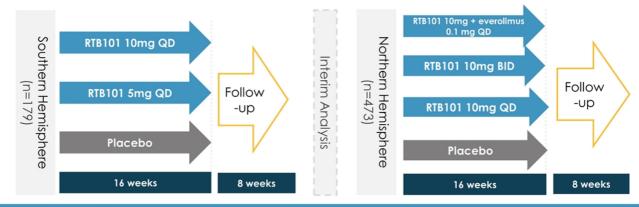
65 and older w/ diabetes

65 and older w/ COPD

65 and older, smokers

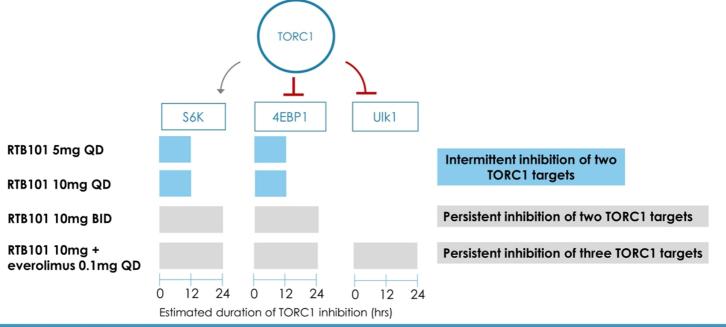
PRIMARY ENDPOINT: Self-reported

RTIs


Laboratory-Confirmed

DOSING 16 weeks 6 weeks **DURATION:**

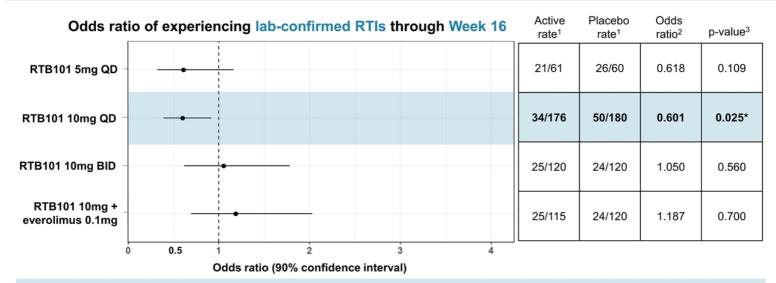
Goal: Define patient population for Phase 3 program


Phase 2b design

- Primary Endpoint: Reduction in the percentage of patients with laboratory-confirmed RTIs through week 16
- Population: Elderly subjects at increased risk of RTI-associated morbidity and mortality, defined as:
 - ≥85 years of age
 - 65-84 years of age with one or more comorbidities including:
 - Asthma
 - Chronic obstructive pulmonary disease (COPD)
 - Type 2 diabetes mellitus (T2DM)
 - Current smoker

QD = once daily; BID = twice daily

Dosing regimens in Phase 2b estimated to result in different duration and spectrum of TORC1 inhibition



QD = once daily; BID = twice daily

res**TOR**bio

22

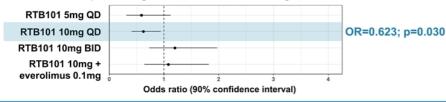
Odds ratio supports dose selection and potential efficacy of RTB101 10mg QD

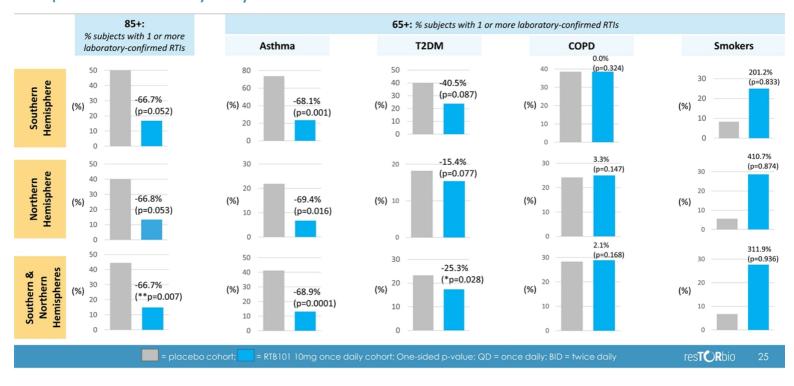
RTB101 10mg QD demonstrated a 30.6% reduction in the percentage of patients with laboratory-confirmed RTIs compared to placebo

No. of patients in cohort with one or more laboratory-confirmed RTIs/No. of patients in cohort; 20dds ratio represents the odds of experiencing one or more

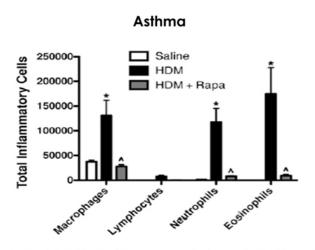
RTB101 10mg QD showed consistent benefit in multiple pre-specified analyses of lab-confirmed RTIs

Odds ratio of experiencing lab-confirmed RTIs through Week 16 - primary endpoint

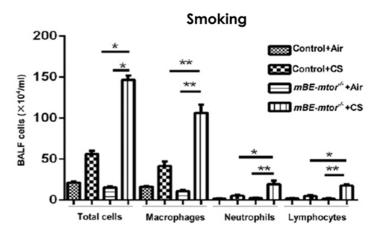



RTB101 10mg QD associated with statistically significant reductions across three different analyses of laboratoryconfirmed RTIs: Week 16, severe RTIs and Week 24

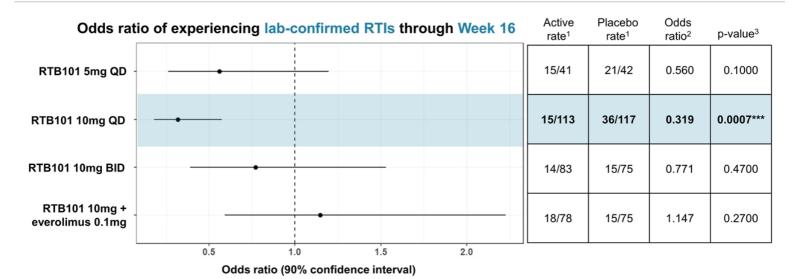
Odds ratio of experiencing lab-confirmed RTIs through Week 24



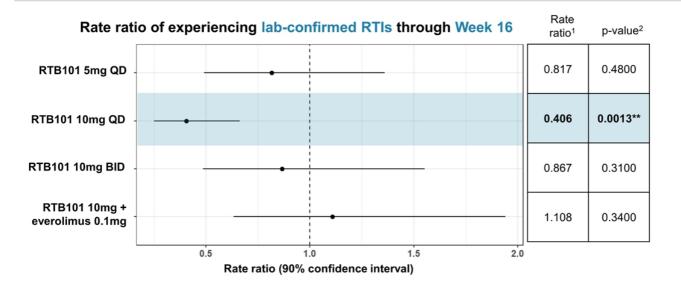
One-sided p-value; QD = once daily; BID = twice daily; Odds ratio represents the odds of experiencing one or more event in the active treatment group versus the placebo group


COPD and smokers were non-responding subgroups (prespecified analyses)

mTOR inhibition decreased airway inflammation in asthma and increased airway inflammation due to smoking



mTOR inhibition with rapamycin (Rapa) significantly **decreased** airway inflammation in a preclinical asthma model in which mice were exposed to intranasal house dust mites (HDM)¹



Disruption of mTOR selectively in bronchial epithelial cells (mBE-mtor-/-) significantly **increased** cigarette smoke (CS)-induced lung inflammation in a COPD model in which mice were exposed to cigarette smoke for 6 months²

A significant reduction in the incidence of laboratory-confirmed RTIs was observed in subjects 65+ (excluding smokers/COPD patients)

A significant reduction in the rate of laboratory-confirmed RTIs was observed in subjects 65+ (excluding smokers/COPD patients)

Rate ratio represents the rate of experiencing one or more laboratory-confirmed RTIs in the active treatment group versus the placebo group; 2One-sided palue; **p<0.001; QD = once daily; BID = twice daily

Summary of RTB101 10mg QD data from two Phase 2 clinical studies enrolling > 900 elderly subjects

Phase 2a 264 healthy elderly

(23% with comorbidities)

• 42% reduction in the rate of RTIs (p=0.006)

Phase 2b 652 elderly (100% with comorbidities)

- **30.6% reduction** in the percent of patients with laboratory-confirmed RTIs (p=0.025)
- 56.9% reduction in the percent of patients with laboratory confirmed RTIs (excluding smokers/COPD patients; p=0.007)

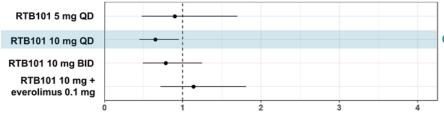
Data from two Phase 2s enrolling >900 elderly subjects demonstrate RTB101 10 mg QD potential efficacy in subjects 65 and older (excluding smokers/COPD patients)

QD = once daily res**T○R**bio 29

RTB101 was well-tolerated in high-risk elderly patients through Week 24

- Adverse events (AEs) were balanced between the RTB101 10mg QD and placebo cohorts
- 1 unrelated death occurred in the RTB101 10mg QD cohort (patient was hit by car while riding a bicycle), 1 unrelated death occurred in the RTB101 10mg BID cohort and 1 unrelated death occurred in the placebo cohort (both from unknown causes)

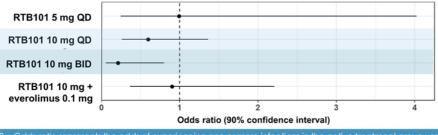
	RTB101 10mg QD	Placebo
Serious AEs (% of patients)	4.5%	7.8%
Discontinued study drug due to an AE (% of patients)	5.1%	5.6%
Number of severe AEs	12	25


QD = once daily; BID = twice daily

res**TOR**bio

30

RTB101 may also reduce the incidence of total infections of any kind


Odds ratio of experiencing any infection (lab-confirmed RTI and all other infections) through Week 16

OR=0.653; p=0.032

RTB101 associated with statistically significant reductions across analyses of other infections: Infections of any kind and urinary tract infections

OR=0.601; p=0.156 OR=0.211; p=0.027

OR = Odds ratio represents the odds of experiencing one or more infections in the active treatment group versus the placebo group One-sided p-value; QD = once daily; BID = twice daily

Market Opportunity in RTIs

RTIs in the elderly represent a significant healthcare burden

- Mortality from RTIs is higher than mortality from colorectal, pancreatic, breast or prostate cancer¹
- RTIs are the 4th most common cause for hospitalization in 65+ (2nd in 85+)²
- RTIs cause the majority of asthma exacerbations in the elderly³
- The majority of RTIs are caused by viruses for which there are no approved therapies⁴
- Decreasing the incidence of RTIs in the elderly may significantly decrease health care costs

Estimated number of elderly that may benefit from RTB101 in key geographies

	US	EU5	JP	CN
# Elderly People without COPD and who are non-smokers*	40M	53M	29M	77M
Elderly (65-84 years old) with asthma:	3.2M	3.3M ¹	$2.1M^{2}$	$2.5M^{3}$
Very elderly (85+ years old):	6.5M	9.3M	5.5M	8.9M

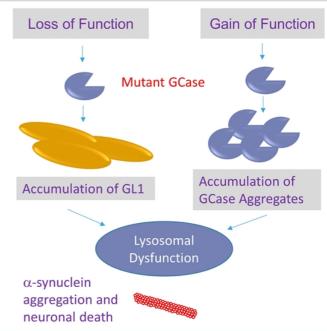
Survey of 100 physicians to determine potential usage in the target patient populations

Physician survey*: Expected use in target populations

% Reduction in RTI	Estimated % prescribed in patients (patient-weighted means)			
	≥85	65-84 with asthma	65-84 with comorbidities	
25%	33%	36%	36%	
33%	41%	44%	47%	
40%	46%	48%	51%	

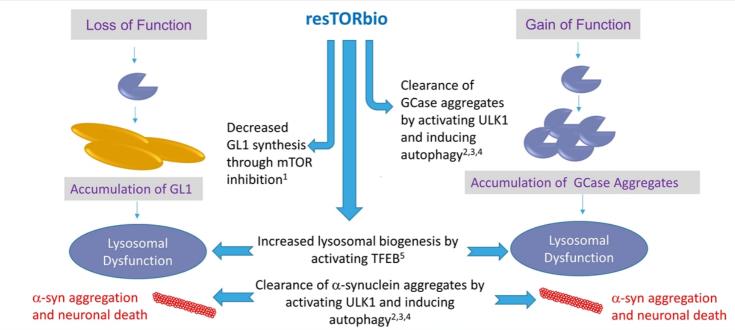
*Respondent background (n=100):

Medical Specialty	
Geriatrics	25
Primary Care	50
Pulmonologist	25


Practice ch	aracteristics
Years practicing medicine	Avg 19 (median 19.5, range 6-33)
# pts ≥ 65 seen/month	Avg 250 (median 220, range 80-600)
% services billed to Medicare	Avg 63% (median 65%, range 30-100%)

Ameliorating Neurodegenerative Diseases GBA Parkinson's Disease

GBA mutation in Parkinson's disease (PD) leads to α -synuclein aggregation and neuronal cell death


Disease cascade:

- GBA is a gene encoding the lysosomal enzyme glucocerebrosidase (GCase)
- Mutant GCase may contribute to PD pathogenesis through a loss or gain of function:
 - Loss of function: Decreased GCase activity leading to an accumulation of its lipid substrate glucosylceramide (GL1) that disrupts lysosomal function¹
 - Gain of function: Accumulation of misfolded GCase aggregates that disrupt lysosomal function²
- Disruption of lysosomal function prevents clearance of aggregated a-synuclein and leads to neuronal death

Mazzulli, J. R., et al. (2011). Cell 146(1): 37-52; ²Cullen,V., et al. (2011). Annals of Neurology 69(6): 940-953.

resTORbio GBA PD program potential benefits to GBA PD patients (both loss or gain of function GBA mutations)

Guri, Y., et al. (2017), Cancer Cell 32(6); 807-823; ²Decressac, M., et al. (2013), Proc Natl Acad Sci USA 110(19); E1817-1826; ³ Cullen, V., et al. (2011), Ann Neurol 69(6); 940-953; ¹Kinghorn, K.J., et al. (2016), J Neurosci 36(46); 11654-11670; ⁵Roczniak-Ferguson, A., et al. (2012), Sci Signal 5(228); ra42.

res**TOR**bio

38

Phase 2a Parkinson's disease trial design

	Randomized, Placebo-Controlled Phase 2a Study (12-week dosing)		
Design	 Mild-to-moderate PD patients (mH&Y I-III) with confirmed GBA mutation 		
	 On stable medication regimen of PD drugs 		
	Once weekly dosing		
Study Size	N=45		
	Primary endpoint:		
	 Safety and tolerability 		
	Secondary endpoint:		
Key Endpoints	 Exposure in blood, plasma and CSF 		
	Exploratory endpoints:		
	 Biomarkers in plasma and CSF 		
	biomarkers in plasma and est		

RTB 101 dose (mg)	Sirolimus dose (mg)
300	0
0	2
300	2
300	4
300	6
	dose (mg) 300 0 300 300

Phase 2a initiation planned for 1Q19

Near term milestones and financials

Milestones

Q1 2019	End of Phase 2 meeting with the FDA
Q1 2019	Initiate Phase 2a study in Parkinson's disease
H1 2019	Initiate Phase 3 program for reducing the incidence of RTIs

Financials

Cash, cash equivalents and marketable securities were \sim \$115 million as of September 30, 2018

resTORbio highlights

Targeting the biology of aging

- Lead clinical candidate, RTB101, is the most advanced selective TORC1 inhibitor
- TORC1 inhibition improves the function of aging organ systems including the immune, neurologic, and cardiovascular systems

Positive results in Phase 2b to improve immune function and reduce the incidence of RTIs

- 30.6% reduction in the percentage of patients with laboratory-confirmed RTIs (p=0.025)
- 52.1% reduction in percentage of patients with severe laboratory-confirmed RTI symptoms (p=0.034)
- Successfully defined dose and patient population for Phase 3 program
- End-of-Phase 2 meeting with the FDA expected in 1Q19; Plan to initiate Phase 3 program in 1H19
- RTIs are the 4th most common cause of hospitalization in people 65+; 2nd in 85+ (US)

Data-driven approach to expand into additional aging-related indications

- Improving neurologic function: Plan to initiate Phase 2a study in GBA Parkinson's disease in 1Q19
- · Building a pipeline targeting multiple mechanisms underlying aging

RTI = respiratory tract infection

res**TOR**bio

41

Extensive genetic validation that TORC1 Inhibition extends lifespan across species

- 1) Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001;292(5515):288-290.
- 2) Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. *FEBS Lett*. 2004; 557(1–3):136–142.
- 3) Kaeberlein M, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310(5751):1193-1196.
- 4) Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. *Cell Metab*. 2007; 5(4):265–277.
- 5) Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620.
- 6) Jia K, Chen D, Riddle DL. The TOR pathway inter- acts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. *Development*. 2004;131(16):3897–3906.
- 7) Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. *Aging Cell*. 2007;6(1):95–110.
- 8) Pan KZ, et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell. 2007;6(1):111-119.
- 9) Robida-Stubbs S, et al. TOR Signaling and rapamy- cin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713-724.
- 10) Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. *Curr Biol*. 2004;14(10):885–890.
- 11) Luong N, et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab. 2006;4(2):133-142.
- 12) Zid BM, et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell. 2009;139(1):149–160.
- 13) Selman C, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 2009;326(5949):140-144.
- 14) Lamming DW, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. *Science*. 2012; 335(6076):1638–1643.

References for number of elderly people without COPD and who are non-smokers

US:

- 1. 4,038,000 elderly people estimated to be smokers in the US. U.S. NHIS 2017, https://www.cdc.gov/nchs/nhis/SHS/tables.htm (accessed Jan 5, 2019), Table A-12b.
- 2. Prevalence of COPD in the elderly estimated at 14.2%. Hanania, N. et al, 2010 "COPD in the Elderly Patient" https://www.medscape.com/viewarticle/730813_2 (accessed Jan 5, 2019)
- 3. 14.1% of current smokers were assumed to have COPD. Cunningham, T.J., et al., COPD, 2015. 12(3): p. 276-86.
- 4. Size of U.S. elderly population estimated at 50,858,679 in 2017. U.S. Census Bureau. https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml? (accessed Jan 5, 2019)

Europe:

- 1. Smoking prevalence in the elderly in each European country. Eurostat database, http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=hlth_ehis_sk3e&lang=en (accessed Jan 5, 2019)
- 2. COPD prevalence in the elderly estimated at 14.2%. Raherison, C. and P.O. Girodet, Epidemiology of COPD. Eur Respir Rev, 2009. 18(114): p. 213-21.
- 3. 29.6% & 16.1% of COPD patients aged 65-75 & 75 and over, respectively estimated to be current smokers. Worth, H., et al., The 'real-life' COPD patient in Germany: The DACCORD study, Respir Med, 2016, 111; p. 64-71.
- 4. Size of elderly population in each European country. UN Data, United Nations Statistics Division, http://data.un.org/Data.aspx?d=POP&f=tableCode%3A22 (accessed Jan 5, 2019) Japan:
- Smoking prevalence in people aged 60 and over in Japan (21.2% in men, 5.6% in women). Japan Tobacco Inc., JT's Annual Survey Finds 18.2 % of Japanese Adults Are Smokers. 2017. https://www.jt.com/media/news/2017/pdf/20170727 E02.pdf (accessed Jan 5, 2019)
- COPD prevalence in people aged 60 and over in Japan (11.5% of men, 5.8% of women); 17% & 0% of male and female current smokers, respectively, estimated to have COPD. Takemura, H., et al., Prevalence of COPD in Japanese People on Medical Check-Up. Journal of Experimental Medicine, 2005. 207: p. 41-50.
- Size of elderly population estimated at 35,228,000 (15,294,000 men, 19,933,000 women). E-Stat, Portal Site of Official Statistics of Japan. https://www.e-stat.go.jp/en/stat-search/files?page=1&layout=datalist&toukei=00200524&tstat=000000090001&cycle=1&year=20180&month=12040606&tclass1=000001011678 (accessed Jan 5, 2019)China:

China:

- 1. Smoking prevalence in the elderly in China estimated at 22.7%. Li, Q., J. Hsia, and G. Yang, Prevalence of Smoking in China in 2010. New England Journal of Medicine, 2011. 364(25): p. 2469-2470.
- 2. COPD prevalence in the elderly; COPD prevalence among current smokers. Fang, L., et al., Chronic obstructive pulmonary disease in China: a nationwide prevalence study. The Lancet Respiratory Medicine, 2018. 6(6): p. 421-430.
- 3. Size of elderly population in China by age. https://www.populationpyramid.net/china/2016/ (accessed Jan 5, 2019)

