

ADI-001 Phase 1 Interim First in Human Clinical Data

First-in-class allogeneic, off-the-shelf gamma delta ($\gamma\delta$) CAR T cells

A MAR	A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	The second secon	
					W

Forward-Looking Statements

This presentation contains "forward-looking statements" of Adicet within the meaning of the Private Securities Litigation Reform Act of 1995 relating to business and operations of Adicet including, but not limited to, express or implied statements regarding preclinical and clinical development of Adicet's product candidates, including future plans or expectations for ADI-001 and ADI-002 and potential therapeutic effects of ADI-001 and ADI-002, the timing and outcome of discussions with FDA and other regulatory agencies, expectations regarding the design, implementation, timing, and success of its current and future clinical studies of ADI-001, and ADI-002 including whether they are pivotal or would support registration, expectations regarding its other CAR T cell therapy development activities, Adicet's growth as a company, and its expectations regarding its uses of capital, expenses, future accumulated deficit and other third guarter 2021 financial results. Any forward-looking statements in this presentation are based on management's current expectations and beliefs of future events, and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements, including without limitation, the effect of COVID-19 on Adicet's business and financial results, including with respect to disruptions to its clinical trials, business operations, and ability to raise additional capital; Adicet's ability to execute on its strategy; that positive results from a clinical study may not necessarily be predictive of the results of future or ongoing clinical studies; future clinical studies may fail to demonstrate adequate safety and efficacy of our product candidates, which would prevent, delay, or limit the scope of regulatory approval and commercialization; regulatory approval processes of the FDA and comparable foreign regulatory authorities are lengthy, time-consuming, and inherently unpredictable; regulatory developments in the United States and foreign countries; Adicet's estimates regarding expenses, future revenue, and capital requirements; as well as those risks and uncertainties set forth in Adicet's most recent annual report on Form 10-K and subsequent filings with the Securities and Exchange Commission (SEC). For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause Adicet's actual results to differ from those contained in the forward-looking statements, see the section entitled "Risk Factors" in Adicet's most recent annual report on Form 10-K and our subsequent guarterly reports on Form 10-Q and current reports Form 8-K filed with the Securities and Exchange Commission (the "SEC"), as well as discussions of potential risks, uncertainties, and other important factors in Adicet's other filings with the SEC. All information in this presentation is as of the date its release, and Adicet undertakes no duty to update this information unless required by law.

Industry and Market Information

Information regarding market share, market position and industry data pertaining to Adicet's business contained in this presentation consists of estimates based on data and reports compiled by industry professional organizations and analysts and Adicet's knowledge of their industry. Although Adicet believes the industry and market data to be reliable, this information could prove to be inaccurate. You should carefully consider the inherent risks and uncertainties associated with the market and other industry data contained in this presentation. Forward-looking information obtained from third-party sources is subject to the same qualifications and the additional uncertainties as the other forward-looking statements in this presentation.

Welcome and Introductory Remarks	Cł Pre
Review of ADI-001 Interim Phase 1 Data	Fr Ch

Chen Schor President and CEO

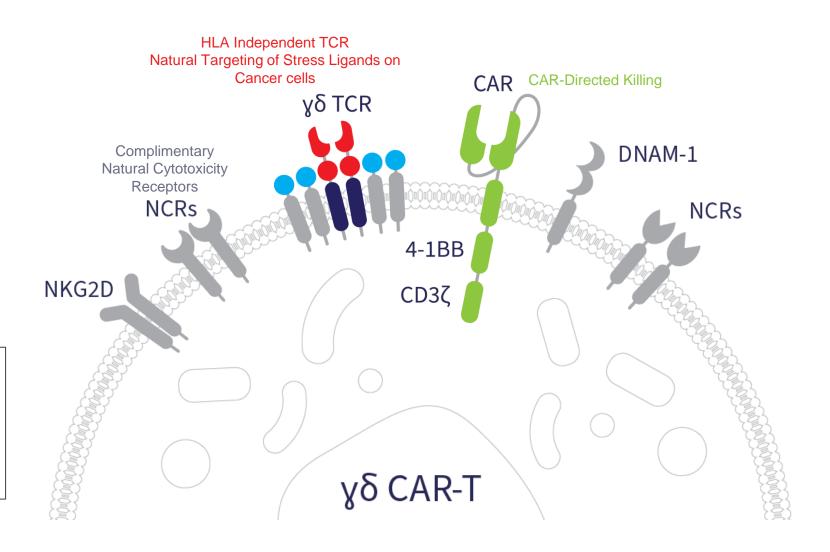
Francesco Galimi, M.D., Ph.D. Chief Medical Officer

Opportunities Offered by $\gamma \delta T$ Cell Therapy

Sattva Neelapu, M.D. MD Anderson Cancer Center

Chen Schor/All

Adicet Bio: Leaders in γδ CAR T Cell Therapy


- ADI-001 is the first-ever off-the-shelf, γδ CAR T cell investigational therapy to reach clinical trials and report clinical data
- Interim clinical data indicate that ADI-001 is highly clinically active with a favorable safety profile in patients treated to date
- γδ T cells may provide significant clinical advantages both in terms of anti-tumor activity and safety compared to other allogeneic cell platforms or bispecifics
- · $\gamma \delta 1$ T cells may provide benefits as compared to $\gamma \delta 2$ T cells

Adicet's γδ1 CAR T Cells: 3 Mechanisms for Anti-tumor Activity

γδ CAR T cells designed to provide three mechanisms for anti-tumor activity; More limited ability for tumor escape

- 1. Innate anti-tumor activity targeting multiple surface proteins selected by evolution to mark tumors for cell killing
- 2. Adaptive anti-tumor activity via $\gamma\delta$ TCR
- 3. CAR mediated anti-tumor activity
- No requirement for gene editing to remove TCR
- Potential for outpatient administration
- Intrinsically home to and function in tissues and solid malignancies

5 CAR: Chimeric Antigen Receptors; DNAM-1: DNAX accessory molecule-1; GvHD: Graft Versus Host Disease; HLA: Human Leukocyte Antigen; MHC: Major Histocompatibility Complex; NCR: Natural Cytotoxicity Receptors; NK: Natural Killer; TCR: T Cell Receptor; NKG2D: NK Group 2D

Adjcet CAR $\gamma\delta$ T Cell Platform Potential Advantages: Designed to Address Activity, Tumor Homing, Safety, and COGs Limitations

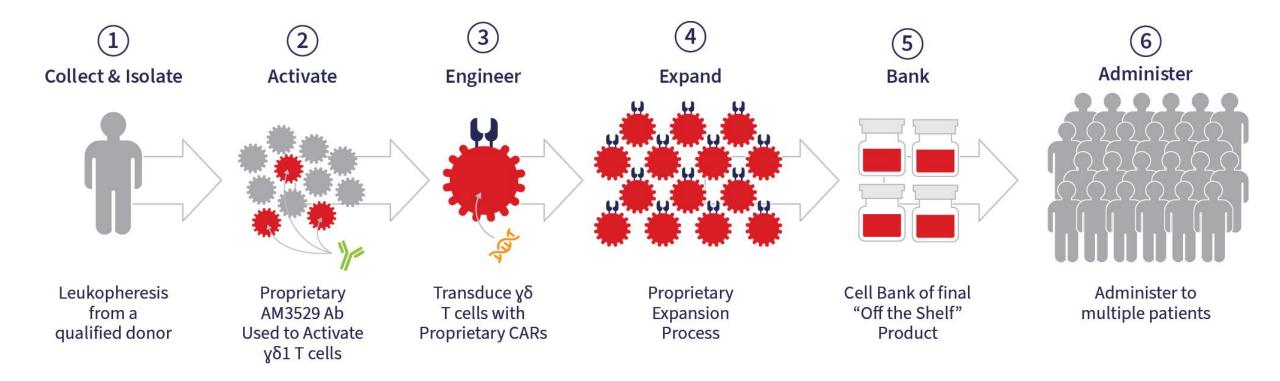
		Allogeneic CAR αβ T Cells	Allogeneic CAR NK Cells	Allogeneic CAR γδ T Cells
	Innate anti-tumor response		\checkmark	\checkmark
	Adaptive anti-tumor response	\checkmark		
ity*	Active tumor homing			
Activity*	Predominantly activating receptor expression	(Limited number)	(Balance with inactivating)	 Image: A second s
	Preclinical persistence by repeat tumor challenge			 Image: A second s
	Prognostic value of tumor infiltration		 Image: A second s	~~
ety*	Low GvHD risk	(Requires αβ TCR deletion)	 Image: A start of the start of	
Safety*	Low risk of cytokine release syndrome ≥ grade 3 risk	,	~	 Image: A start of the start of
OGS	No gene editing required (May affect efficacy)		 Image: A second s	\checkmark
Ŏ Ċ	Scalable manufacturing	Limited without exhaustion		

6

Advantages of $\gamma \delta 1 T$ Cells

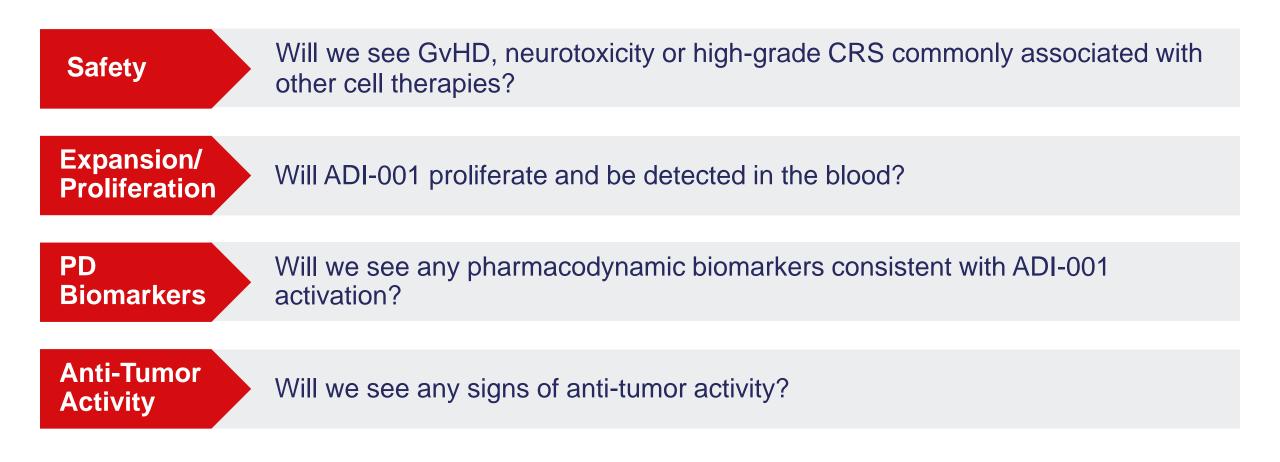
Potential

7

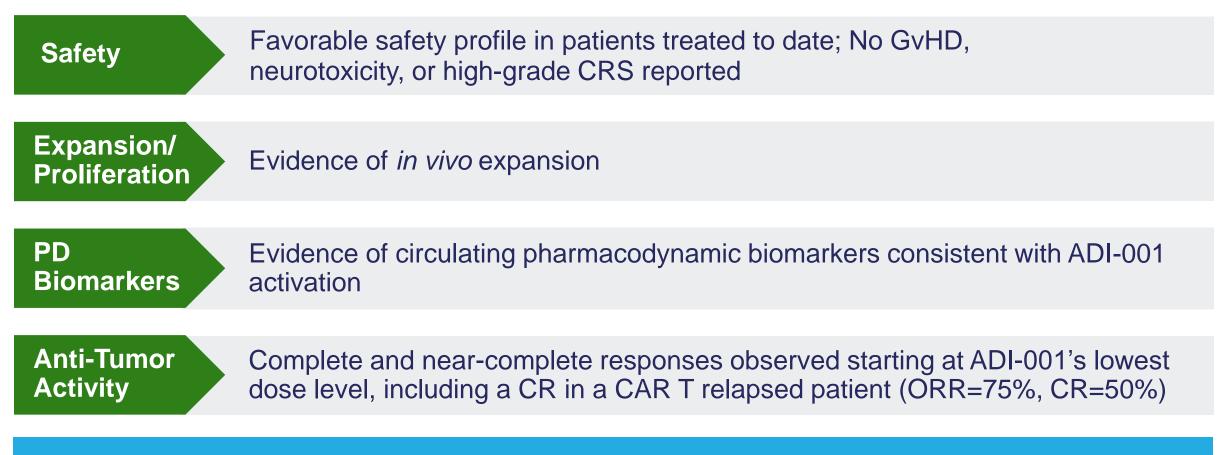

	Feature	Vδ1+ T cells	Vδ2+ T cells	Comment
	Diverse VDJ rearranged TCR			Vδ2+ T cells generally express invariant TCR
	Programmed adaptations for tissue survival			Vδ1+ T cells tolerate hypoxic and low nutrient conditions
	Expression of tumor homing receptors			Vδ1+ T cells express CCR5 and tumor homing receptors
Ę	Long lifespan & adaptive immune response			Vδ1+ T cells oligoclonally expand to pathogenic antigens
Activity	MHC unrestricted TCR			Vδ1+ T cells recognized antigen independent of MHC
Ā	NKG2D & broad NCR expression			Prevents immune escape of tumor cells
	High granzyme & perforin expression			Vo1+ T cells are highly cytolytic (similar to CD8 $\alpha\beta$ T cells
	Broad anti-tumor toxicity			Vδ1+ T cells recognize numerous malignant cell types
	Low / no KIR Expression			Adicet' s Vδ1+ T cells display low inhibitory KIR
	GvHD incompatible TCR			Vδ1+ T cells cannot be activated by unmatched MHC
ntial ety	No IL-17 / RORγt expression (Th17)			Adicet' s Vδ1+ T cells never express "protumorigenic" IL-17 or RORγt
Potential safety	Moderate IL-2 expression			Adicet's Vδ1+ T cells don't hyperproliferate
	High expansion without exhaustion			Adicet's Vδ1+ T have potential for 2E11 fold expansion

IL: Interleukin; KIR: killer cell immunoglobulin like receptor; MHC: major histocompatibility complex; NCR: natural cytotoxicity receptor; NK: natural killer; TCR: T cell receptor; Th: T helper

Gentles, A. et al. Nat. Med. 21, 938–945 (2015); Girardi, M. et al. J. Exp. Med. 198, 747–755 (2003); Girardi, M. et al. Science 294, 605–609 (2001); Godder, K. T. et al. Bone Marrow Transplant. 39, 751–757 (2007); Minculescu, L. et al. Front. Immunol. https://doi.org/10.3389/fimmu.2019.01997 (2019); Nussbaumer, O. & Koslowski, M. Immuno-Oncology Technol. 1, 3–10 (2019).


Large-Scale Manufacture of Off-The-Shelf $\gamma\delta$ T Cell Candidates

Proprietary AM3529 activating antibody designed to expand γδ1 T cells, Proprietary Vectors, Proprietary Scalable Process



ADI-001 FIH: Key Topics Adicet Set Out to Answer

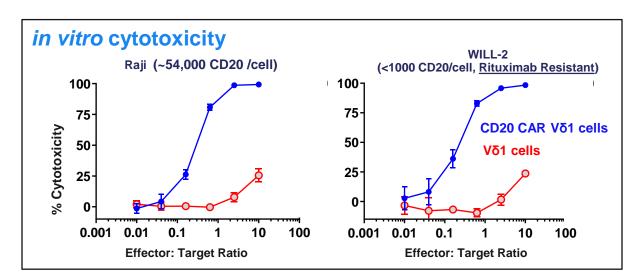
ADI-001 FIH: Key Findings to Date

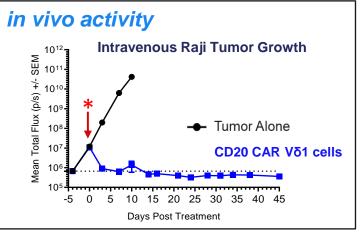
Data supports potential of Adicet's first-in-class allogeneic γδ CAR T cell platform

GLEAN1 – Interim Data

<u>Gamma deLta adoptive thErApy for B cell NHL</u>

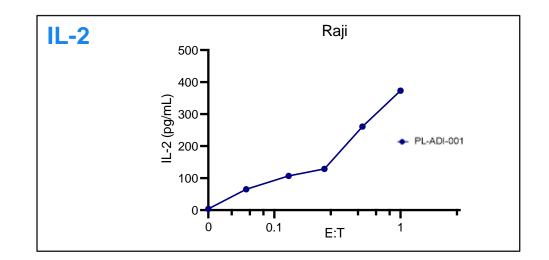
First in Human Study for ADI-001 (CD20 γδ CAR T cells)

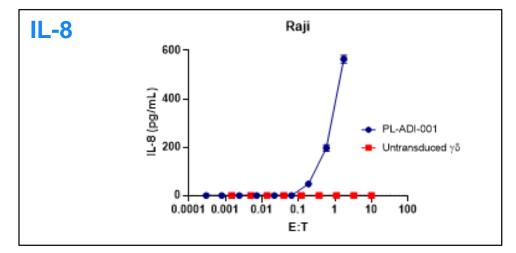

Francesco Galimi, M.D., Ph.D. Chief Medical Officer



ADI-001 Demonstrated CD20-Targeted Activity Against Tumors

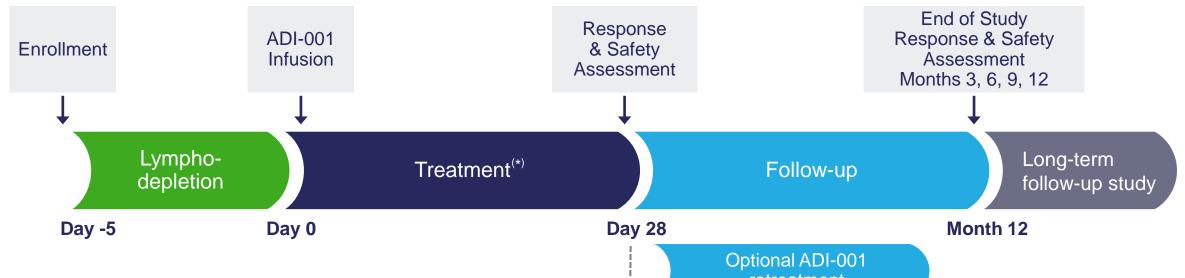
- In pre-clinical studies, ADI-001 effectively targeted CD20+ cancer cells with high potency
- CD20 targeting moiety does not compete with rituximab and is engineered to retain potency in rituximab-resistant cancers where CD20 is downregulated
- Potency of the CD20 CAR is complemented by killing through innate cytotoxicity receptors, including NKG2D
- Together, ADI-001 has demonstrated significant and durable *in vivo* anti-tumor activity





Cytokine Profile for ADI-001 Cancer Cell Engagement and Activation

- ADI-001 activation and cytotoxicity against CD20+ lymphoma cells is accompanied by secretion of polyfunctional cytokines
- These include secretion of IL-2 & IL-8
- Notably, IL-6 is not commonly a component of the cytokine profile for ADI-001 activation



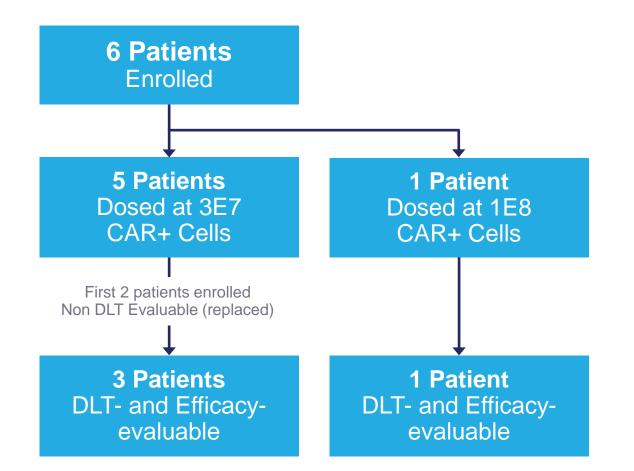
Today we will discuss ADI-001's:

- Initial safety profile for 1st allogeneic γδ CAR T cell investigational therapy
- · Initial evidence of cell expansion in patients
- Initial evidence of pharmacodynamic engagement
- Complete and near-complete responses observed starting at ADI-001's lowest dose level (30M CAR+ cells)
 - Yescarta 30M CAR+ cells is approximately 5X lower than the approved dose for Yescarta (an autologous CD19 $\alpha\beta$ T cell therapy)
 - CAR NK Cell therapy 30M CAR+ cells is the first dose level in a CD19 CAR NK cell therapy study where one PR was observed out of three evaluable patients


GLEAN-1: ADI-001 FIH Study (CD20 γδ CAR T cells)

Phase 1 study design

- NHL patients relapsing from 2 or more prior lines of treatment
- 3 cohorts expected for dose escalation/safety:
 3E7, 1E8 and 3E8 CAR+ cells
- Up to 50 patients at the selected dose


First Patient First Dose: May 2021

Lymphodepletion Regimen: Flu/Cy Fludarabine: 30 mg/m²/d x 3 days, Cyclophosphamide 500 mg/m²/d x 3 days Protocol allows for enhanced lymphodepletion regimen

ADI-001 FIH Study: Patient Disposition

- Safety Subset: 6 patients
- Efficacy Subsets: 4 patients
 - 3 patients at 3E7 CAR+ cells (starting dose level) (2 patients received standard lymphodepletion and 1 received enhanced lymphodepletion)
 - 1 patient at 1E8 CAR+ cells
 (1 received enhanced lymphodepletion)

Note:

The safety subset includes all patients who received ADI-001

The **efficacy subset** includes all patients who completed at least one response assessment

ADI-001 FIH Study: Patient Characteristics

Cancer Type	Age/ Sex	Prior Therapies		sLD or eLD	ADI-001 CAR + Cells	Prior CAR T?	DLT eval?	DLT	Stage
Transformed DLBCL (from CLL)	62/F	5 prior lines with PD as best response, including:	 R-CHOP rituximab-abbs, gemcitabine, and CDDP rituximab-abbs, gemcitabine, carboplatin polatuzumab + BR x 2 obinutuzumab - hyper cyclophosphamide and dexamethasone 	sLD	3E7 cells	No	Yes	No	IV
Transformed high grade B cell tumor (from FL)	66/F	4 prior lines:	 R-CHOP ibrutinib bendamustine/rituximab rituximab 	sLD	3E7 cells	No	Yes	No	IV
DLBCL	75/M	5 prior lines:	 R-CHOP; IT MTX liso-cel liso-cel (reinfusion) revlimid tafasitamab-cxix 	eLD	3E7 cells	Yes	Yes	No	IV
MCL	62/M	5 prior lines:	 bendamustine/rituximab zanubrutinib bendamustine/obinutuzumab bendamustine/rituximab rituximab/gemcitabine/dex/carboplatin 	eLD	1E8 cells	No	Yes	No	IV
First 2 patients enrolled	d did not c	omplete DLT period	and were replaced per protocol:						
Primary Refractory Burkitt	29/M	3 prior lines with PD as best response:	 R-CODOX-M/R-IVAC cy/flu/rituximab + FT516 Trial R-EPOCH 	sLD	3E7 cells	No	No	N/A	IV
Double hit DLBCL	52/M	5 prior lines, including:	 DA-EPOCH R with IT MTX/ARA-C R-ICE polatuzumab/rituximab tisagenlecleucel gemcitabine/oxliplatin 	sLD	3E7 cells	Yes	No	N/A	IV

- All patients heavily pretreated, with at least 3 prior lines of systemic therapy
- Disease measured by Lugano 2014
- Enrolled multiple subtypes of NHL
- 2 patients had received prior autologous CD19 CAR T

Lymphodepletion:

Standard (sLD): fludarabine (30 mg/m²/day for 3 days) plus cyclophosphamide (500 mg/m²/day for 3 days)

Enhanced (eLD): fludarabine (30 mg/m²/day for 4 days) plus cyclophosphamide (1000 mg/m²/day for 3 days)

TEAE	All Grades (%)	Grade 3+ (%)
IRR	- (0%)	- (0%)
CRS	3 (50%)	- (0%)
ICANS	- (0%)	- (0%)
GvHD	- (0%)	- (0%)
Infection*	2 (33%)	1 (17%)

- N = 6
- No DLTs
- No ICANS
- No GvHD
- No Grade 3+ CRS

* One patient with COVID-19 infection Grade 2 and pneumonia Grade 3; one patient with candida Grade 1

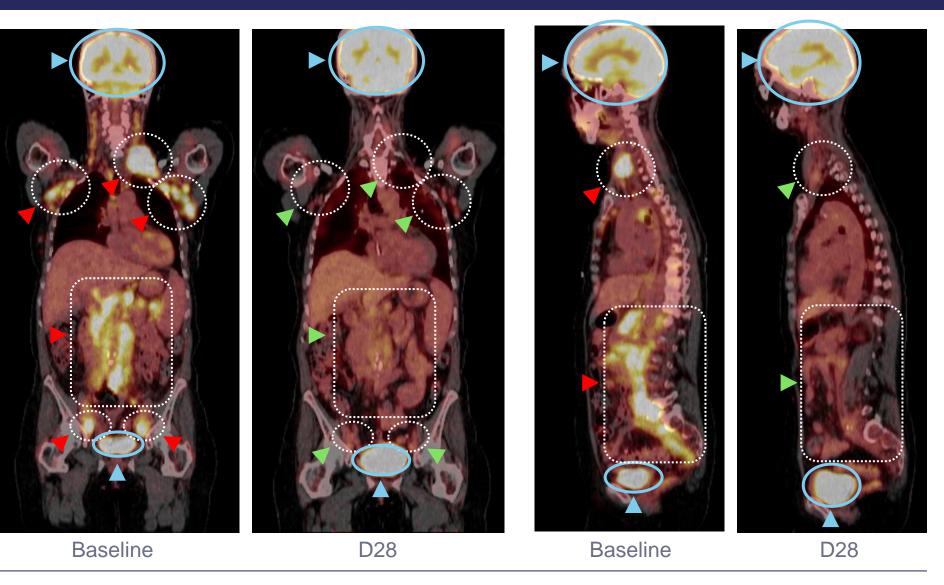
TEAE = Treatment-emergent adverse events; CRS= cytokine release syndrome; GvHD= graft vs host disease ;

18 ICANS= immune effector cell associated neurotoxicity; IRR= infusion-related reaction

ADI-001 FIH Study: Responses in Efficacy-Evaluable Patients

Status	Cancer Type	Age/ Sex	Prior Therapies		sLD or eLD	ADI-001 CAR+ Cells	Prior CAR T?	DLT eval?	DLT	Stage	Best Response
Off Study	Transformed DLBCL (from CLL)	62/F	5 prior lines with PD as best response, including:	 R-CHOP rituximab-abbs, gemcitabine, and CDDP rituximab-abbs, gemcitabine, carboplatin polatuzumab + BR x 2 obinutuzumab - hyper cyclophosphamide and dexamethasone 	sLD	3E7 cells	No	Yes	No	IV	PD
Off study	Transformed high grade B cell tumor (from FL)	66/F	4 prior lines:	 R-CHOP ibrutinib bendamustine/rituximab rituximab 	sLD	3E7 cells	No	Yes	No	IV	PR (near CR)
Active	DLBCL	75/M	5 prior lines:	 R-CHOP; IT MTX liso-cel liso-cel (reinfusion) revlimid tafasitamab-cxix 	eLD	3E7 cells	Yes	Yes	No	IV	CR
Active	MCL	62/M	5 prior lines:	 bendamustine/rituximab zanubrutinib bendamustine/obinutuzumab bendamustine/rituximab rituximab/gemcitabine/dex/carboplatin 	eLD	1E8 cells	No	Yes	No	IV	CR

ORR = 3/4 patients (75%) CR = 2/4 patients (50%)

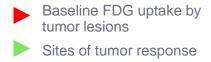


ADI-001 FIH Study: Dose Level 1 (30M Cells) Near Complete Response

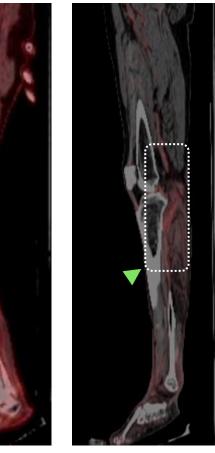
- 66 yo female
- Transformed high grade
 B cell tumor (from FL)
- 4 prior lines
- ADI-001 dose: 3E7 CAR+ cells

Baseline: 12-Aug-2021 D28: 29-Sep-2021

- *FDG uptake by normal tissues
 Baseline FDG uptake by tumor lesions
- Sites of tumor response



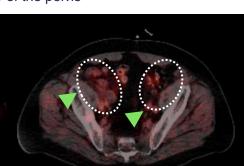
ADI-001 FIH Study: Dose Level 1 (30M Cells) Complete Response



- Diffuse Large B-Cell Lymphoma
- 5 prior lines, including anti-CD19 CAR T
- ADI-001 dose: 3E7 CAR+ cells

Baseline: 8-Sep-2021 D28: 29-Sep-2021

Sagittal view of the right leg


D28

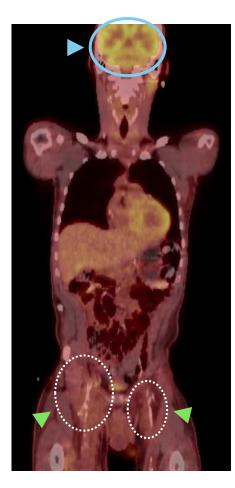
Baseline

Transverse view of the pelvis

Baseline

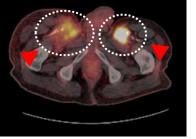
D28

ADI-001 FIH Study: Dose Level 2 (100M Cells) Complete Response


- 62 yo male
- Mantle Cell Lymphoma
- 5 prior lines
- ADI-001 dose: 1E8 CAR+ cells

Baseline: 8-Oct-2021 D28: 19-Nov-2021

- FDG uptake by normal tissues
 Baseline FDG uptake by tumor lesions
- Sites of tumor response



Baseline

D28

Baseline

D28

ADI-001 FIH Study: *In Vivo* Expansion and Pharmacodynamic Biomarkers Consistent with ADI-001 Activation Was Observed

- Consistent increase in IL-15 during 28-day window following lymphodepletion, potentially providing additional cytokine support for the proliferation of ADI-001
- Detection of circulating ADI-001 in the blood by flow cytometry and qPCR indicates expansion of ADI-001 in patients
- Cytokine production, primarily IL-2 and IL-8, observed during the first 14 days from ADI-001 dosing, consistent with observed time-to-peak for similar cytokines for autologous alpha-beta T cells and consistent with activation profile for ADI-001
- No meaningful increase in IL-6, except for one patient during COVID-19 infection, suggesting potentially reduced likelihood for high grade CRS and ICANS

Preliminary data provide evidence of ADI-001 cell proliferation, *in vivo* expansion, target engagement, and anti-tumor activity

ADI-001 FIH Study: Summary

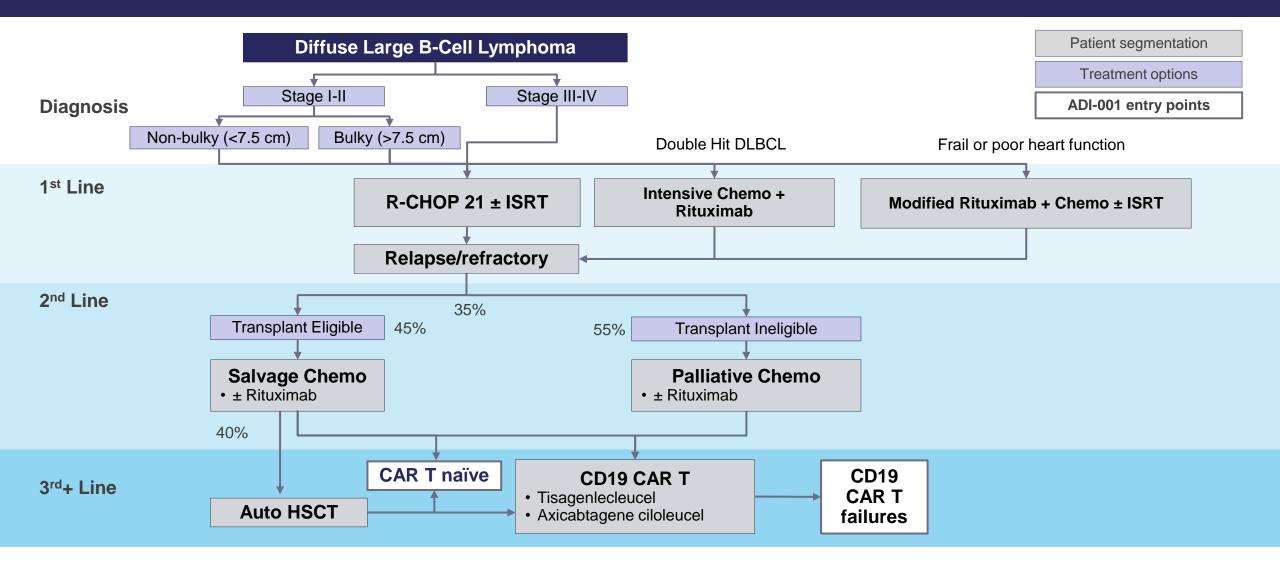
- ADI-001 administration was generally well tolerated in the initial part of the dose escalation; in patients treated to date there were no GvHD, neurotoxicity, or high-grade CRS reported
- Of the four efficacy-evaluable patients, one achieved a near complete response and two achieved a complete response (ORR = 75%, CR = 50%)
- Complete and near-complete responses observed starting at ADI-001's lowest dose level (30M CAR+ cells), including a CR in a CAR T relapsed patient
- Preliminary data provide evidence of ADI-001 cell proliferation, *in vivo* expansion, target engagement, and anti-tumor activity
- Next data update expected in H1 2022
- Potential expansion cohorts in patients relapsing after autologous CD19 CAR T and in NHL subtypes (DLBCL, MCL, FL)

Opportunities Offered by Gamma Delta T Cell therapy

Sattva Neelapu, M.D., MD Anderson Cancer Center

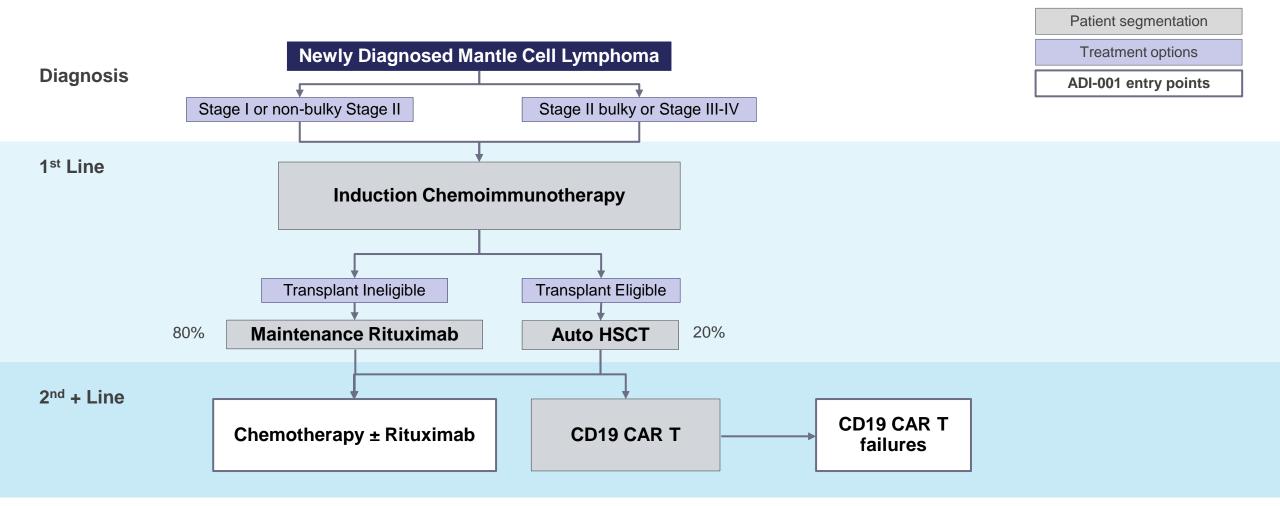
Rationale for Allogeneic $\gamma\delta$ CAR T-Cell Therapy

- Potential to benefit from CAR, adaptive and innate anti-tumor immune response
- Potential for reasonable safety profile
 - Long-term risk of mutagenesis unlikely given no requirement for gene editing
 - Potentially lower risk for CRS and ICANS
 - Long-term B-cell aplasia and hypogammaglobulinemia unlikely
- Potential to improve efficacy as T-cell fitness is expected to be better than autologous products
- Consistent product quality while eliminating wait period for patients (off-the-shelf alternative)
- Potential to lower the cost of CAR T cell therapy
- · Possibly wider access at non-transplant centers



ADI-001: Preliminary Clinical Experience

- High response rate at low dose was measured in patients with bulky disease, including one with prior CAR-T therapy
- Early data seems promising with 75% ORR and 50% CR rate for the first four evaluable patients
- Safety profile seems favorable, no GvHD, no ICANS, and no high-grade CRS reported to date
- Biology of γδ CAR T cells and initial data from first four evaluable patients may support favorable durability:
 - Complementary innate, adaptive, and CAR-T mediated antitumor effects
 - Combination of multiple mechanisms may improve durability and minimize emergence of tumor resistance



DLBCL Detailed Treatment Algorithm

MCL Treatment Algorithm

Wrap Up

Chen Schor, President and CEO

Adicet Bio: Leaders in Engineered γδ CAR T Cell Therapy

- First and only off-the-shelf γδ CAR T cell investigational therapy to report clinical data
- Complete and near-complete responses observed starting at ADI-001's lowest dose level, including a CR in a CAR T relapsed patient
- Favorable safety profile to-date with ADI-001
- Evidence of *in vivo* expansion and circulating pharmacodynamic biomarkers consistent with ADI-001 activation
- Adicet allogeneic $\gamma\delta$ CAR T cell investigational therapy may offer:
 - CAR, innate and adaptive mediated anti-tumor activity; More limited ability for tumor escape
 - No requirement for gene-editing
- \$192.2M cash, cash equivalents & marketable securities (09/30/21)
- Multiple near-term milestones, including ADI-001 clinical update in H1 2022

Building a Broad Pipeline of First in Class γδ CAR T Cell Therapy

	Program	Target	Potential Indication	Discovery	Preclinical	IND	Ph 1	Ph 2	Ph 3 / Commercial	Anticipated Milestone
	ADI-001	CD20	NH Lymphoma							Additional Clinical Data: H1'22
	ADI-002	GPC3	HCC							File IND: Q2'22
-										
	ADI-003	Undisclosed	Solid and Heme							File IND: 2023
	ADI-00x	Undisclosed	Solid / Heme							File IND: 2024
	ADI-00x	Undisclosed	Solid / Heme							File IND: 2025

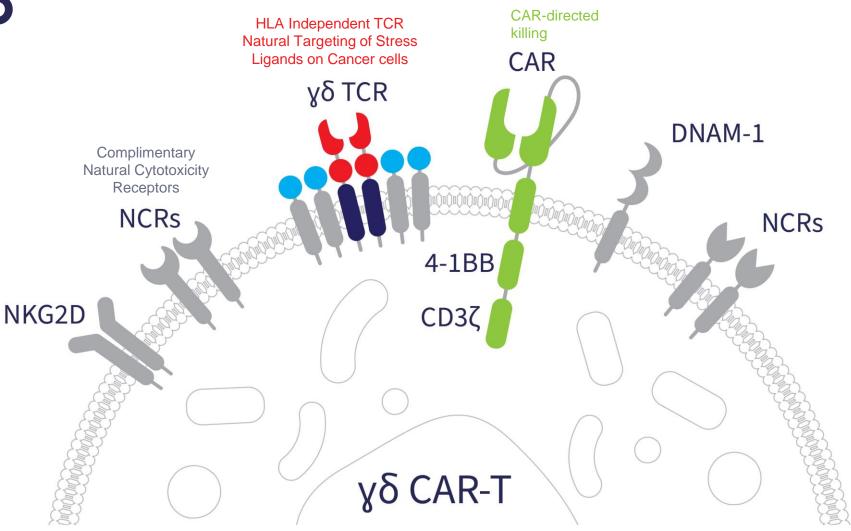
Potential Upcoming Milestones

ADI-001

- Phase 1 NHL clinical update H1'22
- Identify RP2D (recommended Ph2 dose)
- Initiation of expansion study in patients relapsing after autologous CD19 CAR T*
- Initiation of expansion studies in NHL subtypes (DLBCL, MCL, FL)*

ADI-002

- File IND for GPC3+ tumors
- Initiation of Phase 1 in HCC, squamous cell carcinoma of the lung, other GPC3+ tumors


Expand γδ CAR T pipeline

• New clinical program every 12-18 months

Leaders in γδ CAR T Cell Therapy

CAR: Chimeric Antigen Receptors; DNAM-1: DNAX accessory molecule-1; GvHD: Graft Versus Host Disease; HLA: Human Leukocyte Antigen; MHC: Major Histocompatibility Complex; NCR: Natural Cytotoxicity Receptors; NK: Natural Killer; TCR: T Cell Receptor; NKG2D: NK Group 2D